
R basics
Katie Schuler June Choe

2023-08-31

Basics

We begin by defining some basic concepts:

• Expressions are combinations of values, variables, operators, and functions that can
be evaluated to produce a result. Expressions can be as simple as a single value or
more complex involving calculations, comparisons, and function calls. They are the
fundamental building blocks of programming.

– 10 - a simple value expression that evaluates to 10.
– x <- 10 - an expression that assigns the value of 10 to x.
– x + 10 - an expression that adds the value of x to 10.
– a <- x + 10 - an expression that adds the value of x to 10 and assigns the result

to the variable a

• Objects allow us to store various types of data, such as numbers, text, vectors, matrices;
and more complex structures like functions and data frames. Objects are created by
assigning values to variable names with the assignment operator, <-. For example, in x
<- 10, x is an object assigned to the value 10.

• Names that we assign to objects must include only letters, numbers, ., or _. Names
must start with a letter (or . if not followed by a number).

• Attributes allow you to attach arbitrary metadata to an object. For example, adding a
dim (dimension) attribute to a vector allows it to behave like a matrix or n dimensional
array.

• Functions (or commands) are reusable pieces of code that take some input, preform
some task or computation, and return an output. Many functions are built-in to base
R (see below!), others can be part of packages or even defined by you. Functions are
objects!

• Environment is the collection of all the objects (functions, variables etc.) we defined
in the current R session.

1

• Packages are collections of functions, data, and documentation bundled together in
R. They enhance R’s capabilities by introducing new functions and specialized data
structures. Packages need to be installed and loaded before you can use their functions
or data.

• Comments are notes you leave to yourself (within code blocks in colab) to document
your code; comments are not evaluated.

• Messages are notes R leaves for you, after you run your code. Messages can be simply
for-your-information, warnings that something unexpected might happen, or erros if R
cannot evaluate your code.

Ways to get help when coding in R:

• Read package docs - packages usually come with extensive documentation and exam-
ples. Reading the docs is one of the best ways to figure things out. Here is an example
from the dplyr package.

• Read error messages - read any error messages you receive while coding — they give
clues about what is going wrong!

• Ask R - Use R’s built-in functions to get help as you code
• Ask on Ed - ask questions on our class discussion board!
• Ask Google or Stack Overflow - It is a normal and important skill (not cheating) to

google things while coding and learning to code! Use keywords and package names to
ensure your solutions are course-relevant.

• Ask ChatGPT - You can similarly use ChatGPT or other LLMs as a resource. But
keep in mind they may provide a solution that is wrong or not relevant to what we are
learning in this course.

Important functions

For objects:

• str(x) - returns summary of object’s structure
• typeof(x) - returns object’s data type
• length(x) - returns object’s length
• attributes(x) - returns list of object’s attributes
• x - returns object x
• print(x) - prints object x

For environment:

• ls() - list all variables in environment
• rm(x) - remove x variable from environment
• rm(list = ls()) - remove all variables from environment

For packages:

2

https://dplyr.tidyverse.org/

• install.packages() to install packages
• library() to load the package into your current R session.
• data() to load data from package into environment
• sessionInfo() - version information for current R session and packages

For help:

• ?mean - get help with a function
• help('mean') - search help files for word or phrase
• help(package='tidyverse') - find help for a package

Vectors

One of the must fundamental data structures in R is the vector. There are two types:

• atomic vector - elements of the same data type
• list - elements refer to any object (even complex objects or other lists)

Atomic vectors can be one of six data types:

• double - real numbers, written in decimal (0.1234) or scientific notation (1.23e4)

– numbers are double by default (3 is stored as 3.00)
– three special doubles: Inf, -Inf, and NaN (not a number)

• integer - integers, whole numbers followed by L (3L or 1e3L)
• character - strings with single or double quotes (‘hello world!’ or “hello world!”)
• logical - boolean, written (TRUE or FALSE) or abbreviated (T or F)
• complex - complex numbers, where i is the imaginary number (5 + 3i)
• raw - stores raw bytes

To create atomic vectors:

• c(2,4,6) - c() function for combining elements, returns 2 4 6
• 2:4 - : notation to construct a sequence of integers, returns 2 3 4
• seq(from = 2, to = 6, by=2) - seq() function to create an evenly-spaced sequence,

returns 2 4 6

To check an object’s data type:

• typeof(x) - returns the data type of object x
• is.*(x) - test if object x is data type, returns TRUE or FALSE

– is.double()
– is.integer()
– is.character()

3

– is.logical()

To change an object to data type (explicit coercion):

• as.*(x) - coerce object to data type

– as.double()
– as.integer()
– as.character()
– as.logical()

Note that atomic vectors must contain only elements of the same type. If you try to include
elements of different types, R will coerce them into the same type with no warning (implicit
coercion) according to the heirarchy character > double > integer > logical.

Operations

Arithmetic operators:

• + - add
• - - subtract
• * - multiply
• / - divide
• ^ - exponent

Comparison operators return true or false:

• a == b - equal to
• a != b - not equal to
• a > b - greater than
• a < b - less than
• a >= b - greater than or equal to
• a <= b - less than or equal to

Logical operators combine multiple true or false statements:

• & - and
• | - or
• ! - not
• any() - returns true if any element meets condition
• all() - returns true if all elements meet condition
• %in% - returns true if any element is in the following vector

Most math operations (and many functions) are vectorized in R:

4

• they can work on entire vectors, without the need for explicit loops or iteration.
• this a powerful feature that allows you to write cleaner, more efficient code
• To illustrate, suppose x <- c(1, 2, 3):

– x + 100 returns c(101, 102, 103)
– x == 1 returns c(TRUE, FALSE, FALSE)

More complex structures

Some more complex data structures are built from atomic vectors by adding attributes:

• matrix - a vector with a dim attribute representing 2 dimensions
• array - a vector with a dim attribute representing n dimensions
• factor - an integer vector with two attributes: class="factor" and levels, which

defines the set of allowed values (useful for categorical data)
• date-time - a double vector where the value is the number of seconds since Jan 01, 1970

and a tzone attribute representing the time zone
• data.frame - a named list of vectors (of equal length) with attributes for names (column

names), row.names, and class="data.frame" (used to represent datasets)

To create more complex structures:

• list(x=c(1,2,3), y=c('a','b')) - create a list
• matrix(x, nrow=2, ncol=2) - create a matrix from a vector x with nrow and ncol
• array(x, dim=c(2,3,2)) - create an array from a vector x with dimensions
• factor(x, levels=unique(x)) - turn a vector x into a factor
• data.frame(x=c(1,2,3), y=c('a','b','c')) - create a data frame

Missing elements and empty vectors:

• NA- used to represent missing or unknown elements in vectors. Note that NA is contageous:
expressions including NA usually return NA. Check for NA values with is.na().

• NULL - used to represent an empty or absent vector of arbitrary type. NULL is its own
special type and always has length zero and NULL attributes. Check for NULL values with
is.null().

Subsetting

Subsetting is a natural complement to str(). While str() shows you all the pieces of
any object (its structure), subsetting allows you to pull out the pieces that you’re
interested in. ~ Hadley Wickham, Advanced R

There are three operators for subsetting objects:

5

• [- subsets (one or more) elements
• [[and $ - extracts a single element

There are six ways to subset multiple elements from vectors with [:

• x[c(1,2)] - positive integers select elements at specified indexes
• x[-c(1,2)] - negative integers select all but elements at specified indexes
• x[c("name", "name2")] select elements by name, if elements are named
• x[] - nothing returns the original object
• x[0] - zero returns a zero-length vector
• x[c(TRUE, TRUE)] - select elements where corresponding logical value is TRUE

These also apply when selecting multiple elements from higher dimensional objects (matrix,
array, data frame), but note that:

• indexes for different dimensions are separated by commas [rows, columns, ...]
• omitted dimensions return all values along that dimension
• the result is simplified to the lowest possible dimensions by default
• data frames can also be indexed like a vector (selects columns)

There are 3 ways to extract a single element from any data structure:

• [[2]] - a single positive integer (index)
• [['name']] - a single string
• x$name - the $ operator is a useful shorthand for [['name']]

When extracting single elements, note that:

• [[is preferred for atomic vectors for clarity (though[also works)
• $ does partial matching without warning; use options(warnPartialMatchDollar=TRUE)
• the behavior for invalid indexes is inconsistent: sometimes you’ll get an error message,

and sometimes it will return NULL

Built-in functions

Note that you do not need to memorize these built-in functions to be successful on quizzes.
Use this as a reference.

For basic math:

• log(x) - natural log
• exp(x) - exponential
• sqrt(x) - square root
• abs(x) - absolute value
• max(x) - largest element

6

• min(x) - smallest element
• round(x, n) - round to n decimal places
• signif(x, n) - round to n significant figures
• sum(x) - add all elements

For stats:

• mean(x) - mean
• median(x) - median
• sd(x) - standard deviation
• var(x) - variance
• quantile(x) - percentage quantiles
• rank(x) - rank of elements
• cor(x, y) - correlation
• lm(x ~ y, data=df) - fit a linear model
• glm(x ~ y, data=df) - fit a generalized linear model
• summary(x) - get more detailed information from a fitted model
• aov(x) - analysis of variance

For vectors:

• sort(x) - return sorted vector
• table(x) - see counts of values in a vector
• rev(x) - return reversed vector
• unique(x) - return unique values in a vector
• array(x, dim) - transform vector into n-dimensional array

For matrices:

• t(m) - transpose matrix
• m %+% n - matrix multiplication
• solve(m, n) - find x in m * x = n

For data frames:

• view(df) - see the full data frame
• head(df) - see the first 6 rows of data frame
• nrow(df) - number of rows in a data frame
• ncol(df) - number of columns in a data frame
• dim(df) - number of rows and columns in a data frame
• cbind(df1, df2) - bind dataframe columns
• rbind(df1, df2) - bind dataframe rows

For strings:

• paste(x, y, sep=' ') - join vectors together element-wise

7

• toupper(x) - convert to uppercase
• tolower(x) - convert to lowercase
• nchar(x) - number of characters in a string

For simple plotting:

• plot(x) values of x in order
• plot(x, y) - values of x against y
• hist(x) - histogram of x

Programming in R

Writing functions and handling control flow are important aspects of learning to program in
any language. For our purposes, some general conceptual knowledge on these topics is sufficient
(see below). Those interested to learn more might enjoy the book Hands-On Programming
with R.

• Functions are reusable pieces of code that take some input, perform some task or
computation, and return an output.

function(inputs){
do something
return(output)

}

• Control flow refers to managing the order in which expressions are executed in a pro-
gram:

– if…else - if something is true, do this; otherwise do that
– for loops - repeat code a specific number of times
– while loops - repeat code as long as certain conditions are true
– break - exit a loop early
– next - skip to next iteration in a loop

Further reading and references

Suggested further reading:

• Getting started with Data in R from Modern Dive textbook
• R Nuts and Bolts in R Programming for Data Science by Roger Peng
• Base R Cheat Sheet

Other references:

8

https://rstudio-education.github.io/hopr/
https://rstudio-education.github.io/hopr/
https://moderndive.com/1-getting-started.html#code
https://bookdown.org/rdpeng/rprogdatascience/r-nuts-and-bolts.html
https://iqss.github.io/dss-workshops/R/Rintro/base-r-cheat-sheet.pdf

• Vectors in Advanced R by Hadley Wickham
• Subsetting in Advanced R by Hadley Wickham
• A field guide to base R in R for Data Science by Hadley Wickham

9

https://adv-r.hadley.nz/vectors-chap.html
https://adv-r.hadley.nz/subsetting.html
https://r4ds.hadley.nz/base-r

	Basics
	Important functions
	Vectors
	Operations
	More complex structures
	Subsetting
	Built-in functions
	Programming in R
	Further reading and references

