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0.1 Correlation as model building

Correlation is actually a simple case of model building in which we use one value (𝑥) to predict
another (𝑦). Specifically, we are fitting the linear model 𝑦 = 𝑎𝑥 + 𝑏, where 𝑎 and 𝑏 are free
parameters. Here, 𝑦 is known as the response variable (the value we are trying to predict)
and 𝑥 is the explanatory variable (the one that we are attempting to explain the response
variable with).

• After z-scoring our variables, the correlation between 𝑥 and 𝑦 is equal to the slope of the
line that best predicts 𝑦 from 𝑥.

0.2 Model building overview

Ideally we want to understand statistical modeling beyond the simple case of correlation. What
if we have more than one explanatory variable? What if the relationship between variables
is not linear? To address model building more broadly, it is helpful to think of building any
model as a four-step process. We’ll treat each of these separately over the coming weeks. The
goal for today is to get a big picture overview of the model building process and the types of
models we might encounter in our research.

• Model specification (this week): what is the form?
• Model fitting (this week); you have the form, how do you guess the free parameters?
• Model accuracy (after break): you’ve estimated the parameters, how well does that

model describe your data?
• Model reliability (after break): when you estimate the parameters, there is some

uncertainty on them
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0.3 Types of models

Model specification involves deciding which type of model we’d like to apply. We will mostly
apply linear models in this class, but it’s useful to first have a conceptual overview of the types
of models we could apply.

0.3.1 Supervised vs unsupervised

As a starting point, we can divide statistical models into two types of learning (so called
because we are trying to “learn” something about the data):

• In supervised learning, we want to predict an output (or response) variable based on
one or more input (or explanatory) variables. We call this supervised learning because
both the input and output variables are known (sometimes this is called “labeled” data),
and we are trying to learn the relationship between them. Linear regression is an example
of a supervised learning model.

• In unsupervised learning, there is no specific output variable that we are trying to
predict. Instead, the model’s objective is to discover the underlying structure or patterns
in the data. We call this unsupervised learning because only the input data is available
(sometimes this is called “unlabeled” data); the model is trying to identify relationships
in the data without being “supervised” by an outcome variable. PCA and cluster analysis
are examples of unsupervised learning.

• There are other machine learning approaches beyond these, like semi-supervised learn-
ing (combining both labeled and unlabeled data) and reinforcement learning (learning
through trial and error based on rewards or penalties). But in this course we will focus
on supervised learning models.

0.3.2 Regression v classification

Regression and classification are both types of supervised learning models — using one or more
input variables to predict an output variable. The only difference between them is in type of
output variable:

• Regression is used when we want to predict a continuous output, meaning it is a number
that can take on any value within a range (e.g. height, weight, response time)

• Classification is used when we want to predict a categorical output, meaning it falls
into specific classes or categories (e.g. true/false, yes/no, male/female/nonbinary). We
cover this during advanced model building.
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0.3.3 Linear v nonlinear regression

There are many types of regression models, but we can simplify by dividing them into two
main types of models:

• In linear regression, the relationship between the explanatory variable(s) and response
variable is represented by a linear equation (a straight line graphed on a two-dimensional
plane).

• Nonlinear regression is useful when the data does not follow a linear pattern, and the
relationship between the variables is better captured by more complex functions (e.g. a
curve or any other nonlinear shape). Nonlinear regression models can be further divided
into two types:

– We can linearize a nonlinear model by applying a mathematical transformation to
make it look like a linear equation (e.g. log, square root, etc). We can fit a linearized
model just like a linear model, but the prediction of the model is not linear with
respect to x.

– Sometimes, no matter what transformation you apply, you cannot acheive a linear
form. These types of models are referred to as nonlinearizable nonlinear models
and are beyond the scope of this class!

0.4 Model specification

Recall from last week that model specification is one aspect of the model building process.
It involves selecting the functional form of the model (the type of model) and choosing which
variables to include. When specifying a model, you’ll need to make the following decisions:

1. Response variable (𝑦): Choose the variable you want to predict or explain (output).
2. Explanatory variables(𝑥𝑛): Choose the variables that may explain the variation in

the response variable (inputs).
3. Functional form: Specify the functional relationship between the response and ex-

planatory variables. For linear models, the relationship is linear, and we use the linear
model equation as our functional form!

4. Model terms: Choose which model terms to include, which is another way of saying
that you need to decide how to include your explanatory variables in the model (since
they can be included in more than one way).

In addition to the decisions above, the following issues can also be considered part of the model
specification process. But we will consider these in future weeks.

• Model assumptions: Check any assumptions underlying the model you selected
(e.g. does the model assume the relationship is linear?).
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• Model complexity: Simple models are easier to interpret but may not capture all
complexities in the data. Complex models may suffer from overfitting the data or being
difficult to interpret.

A well-specified model should be based on a clear understanding of the data, the underlying
relationships, and the research question.

0.4.1 Response variable, 𝑦

Choosing the response variable is usually straightforward once you’ve clearly defined your
research question: what is the thing you are trying to understand? You also need to make
sure whatever you’ve selected is something you can measure (or has already been measured!)

• In the swim records example, we are trying to explain variation in record times, so we
choose record time as our 𝑦. In the brain size example we are trying to explain variation
in brain sizes, so we choose brain size as our 𝑦.

• Remember from last time that we can use regression for continuous response variables
(numbers) but we need to use classification if the response variable is categorical (cate-
gories or levels).

0.4.2 Explanatory variables, 𝑥𝑛

Choosing which explanatory variables to include requires a bit more careful consideration. It’s
one part using your knowledge about the domain you are studying and one part exploratory
data analysis!

• One extreme would be to include just one explanatory variable: the obvious one based
on your research question. In the swim records example, we want to understand how
swim records change over time, so we should definitely include time as an explanatory
variable. But this model is underspecified. We need to consider other variables that
have the potential to explain variation in our response variable, even if they are not of
direct interest. For example, some variation in swim record times can likely be explained
by the swimmer’s gender, so we should include gender as an explanatory variable in our
model.

• Importantly, we do not include every explanatory variable we can think of! We want to
explain the variation in our response variable without building too complex a model or
overfitting the data (overspecifying). We’ll go into more detail about this in future
lectures. For now, just remember you’re Goldilocks: you want the explanatory variables
in the model to explain just the right amount of variation.
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0.4.3 Functional form

Last lecture we introduced the types of models that we could select when specifying a model.
We also mentioned that we will focus on linear models in this class (which are a type of
regression model, which are themselves types of supervised learning models!)

When specifying the functional form of a model, we’re literally specifying the mathematical
formula we’re going to use to represent the relationship between our response and explanatory
variables. Linear models are models in which the response variable (output) is a weighted
sum of the explanatory variables (inputs). In other words, there is a linear relationship between
the response variable and the explanatory variables. The linear model equation can be
expressed in many ways (which can be confusing!). Here are four different ways of representing
the formula for the linear model, to emphasize that they are all the same thing.

1. In high school algebra, the linear model equation is represented as the equation of a
straight line. 𝑦 is the response variable, 𝑥 is the explanatory variable, 𝑎 is the slope of
the line (the relationship between 𝑥 and 𝑦) and 𝑏 is the y-intercept (the value of 𝑦 when
𝑥 is zero). You have (hopefully!) already encountered this equation.

• 𝑦 = 𝑎𝑥 + 𝑏.

2. In machine learning, the linear model equation is usually represented as a weighted
sum of input variables. Note that the only changes are that we refer to the free parameters
as weights (𝑤𝑛) instead of 𝑎 and 𝑏 (to emphasize these are the weights the model learns)
and the ability to add more than one input (𝑥1, 𝑥2, ...𝑥𝑛 instead of just 𝑥):

• 𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ... + 𝑤𝑛𝑥𝑛

3. In statistics, the linear model equation is also represented as a weighted sum of input
variables, except we call the weights “regression coefficients” (𝛽𝑛) and we add an error
term to account for unexplained variability (𝜀):

• 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ... + 𝛽𝑛𝑥𝑛 + 𝜀

4. In matrix notation, the linear model equation is represented as a dot product of vectors.
This is just a more compact representation of the statistics (or machine learning) way,
often used in linear algebra and statistics. 𝑋 is the matrix containing the values of the
explanatory variables, 𝛽 is the vector of regression coefficients, and 𝜀 is the vector of
error terms.

• 𝑦 = 𝑋𝛽 + 𝜀
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0.4.4 Model terms

We’ve specified our response and explanatory variables and the functional form of our model.
Now we need to specify the model terms. Model terms describe how to include the explanatory
variables in our model (they can be included in more than one way!) There are four kinds of
terms: (1) intercept, (2) main, (3) interaction, and (4) transformation.

1. The intercept term, 𝛽0, is a constant (not variable) capturing the typical value of the
response variable when all explanatory variables are zero. It allows the model to have
an offset from the origin, so it is also called the “offset” parameter in some fields. Unless
it makes sense for our response variable to be zero when all other variables are zero (it
rarely does!) we should include the intercept term.

• in R: y ~ 1
• in eq: 𝑦 = 𝛽0 + 𝜀

2. Main terms (AKA main effects) represent the effect of each explanatory variable on
the response variable directly. In other words, how does the response variable change as
a result of changes in a given explanatory variable, when all other explanatory variables
are zero? Each main term corresponds to one explanatory variable and is included in
the model as a single term (𝛽𝑛𝑥𝑛). We can add as many explanatory variables as we like
to the model:

• in R: y ~ 1 + year + gender
• in eq: 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2
• Note that can include categorical explanatory variables like gender, we just need

to find a way to represent the same information numerically, since linear models require
numerical inputs.

3. Interaction terms allow us to express that the effect of one explanatory variable on
the response variable is different at different values of another explanatory variable. For
example, in the swim records data, the effect of gender on record times changes over
year (or said another way, the effect of year on record times is different for men and
women). We are still describing how variation in the response variable is explained by
one or more explanatory variables, we’re just describing how two (or more) variables
combine to influence the response. In the linear model equation, we add a term to the
model in which we multiply the values of the interacting variables.

• in R: y ~ 1 + year + gender + year:gender

– or the short way: y ~ 1 + year * gender

• in eq: 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥1𝑥2
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4. Transformation terms allow us to modify the explanatory variables to accommodate
nonlinear relationships with the response variable. Some of the most common transfor-
mations are 𝑥2,

√𝑥, and 𝑙𝑜𝑔(𝑥). Note that 𝑥 must be a quantitative variable: we can’t
transform categorical variables. In the swim records example, squaring the year term
(𝑥2

1) allowed our model to have a curve shape. But notice that this makes it seem like
record times are slowing down after 1990. This is obviously not the case — records
inherently only get faster! — but models lack common sense, and there is no easy math
way to tell our model to “be curvy, but also never slope upward”.

• in R: y ~ sq(year) * gender
• eq: 𝑦 = 𝛽0 + 𝛽1𝑥2

1 + 𝛽2𝑥2 + 𝛽3𝑥2
1𝑥2

0.5 Model specification practice

library(tidyverse)

0.5.1 Simplest model

Let’s start with the simplest possible example, a dataset with two data points. Suppose you
record how many days you study over the next two days. On day 1, you study for 2 hours.
On day 2, you study for 3 hours. Your dataset might look something like this.
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0.6 Plot
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0.7 Data

day hours_studied
1 2
2 5
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0.8 Code

# create the dataset
study_data <- tibble(
day = c(1, 2),
hours_studied = c(2, 5)

)

# make the plot
study_data %>%
ggplot(aes(

x = day,
y = hours_studied

)) +
geom_point() +
theme_bw(base_size = 25) +
xlim(c(0,3)) +
ylim(c(0,6))

0.9 Further reading

• Ch 6: Language of models in Statistical Modeling
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