
Applied model specification
Katie Schuler

2024-10-08

Now that we’ve covered the terminology and concepts, let’s apply model specification to some
real models.

library(tidyverse)
library(mosaic)

1 “Toy” data

Let’s start with the simplest possible example, a dataset with two data points. Suppose you
record how many days you study over the next 5 days. On day 1, you study for 2 hours. On
day 2, you study for 6 hours and so on. Your dataset might look something like this.

1



1.1 Plot

5

10

1 2 3 4 5

x

y

1.2 Data

x y
1 2
2 6
3 7
4 12
5 13

1.3 Code

toy_data <- tibble(
x = c(1, 2, 3, 4, 5),
y = c(2, 6, 7, 12, 13)

)

toy_data %>%
ggplot(aes(x = x, y = y)) +
geom_point() +
theme_bw(base_size = 14)

2



1. Specify our response variable, 𝑦: the response variable (� data, output, prediction)
is the variable you are trying to predict or explain with your model.

• y

2. Specify explantory variables, 𝑥𝑖: the explanatory variables (� regressors, inputs, pre-
dictors) are the predictors in your data that could help explain the response variable.
Our data has only one possible:

• x

3. Specify the functional form: the functional form describes the relationship between
the response and explanatory variables with a mathematical expresson. In a linear model,
we express this relationship as a weighted sum of inputs:

• 𝑦 = ∑𝑛
𝑖=1 𝑤𝑖𝑥𝑖

4. Specify model terms: here we need to specify exactly how to express our explanatory
variables in our functional form. The actual variables and constants that will be included
in the model. There are four kinds of terms: (1) intercept, (2) main, (3) interaction, and
(4) transformation. Here we have the simplest case of an intercept and one main term
(no interactions or transformations necessary)

• 𝑦 = 𝑤11 + 𝑤2𝑥2
• in R: y ~ 1 + x

2 Plot

5

10

1 2 3 4 5

x

y

Model specification: 𝑦 = 𝑤1 ⋅ 1 + 𝑤2 ⋅ x

3



Call:
lm(formula = y ~ 1 + x, data = toy_data)

Coefficients:
(Intercept) x

-0.4 2.8

Fitted model: 𝑦 = −0.4 ⋅ 1 + 2.8 ⋅ 𝑥

3 Data

x y with_formula with_predict
1 2 2.4 2.4
2 6 5.2 5.2
3 7 8.0 8.0
4 12 10.8 10.8
5 13 13.6 13.6

4 Code

model <- lm(y ~ 1 + x, data = toy_data)

toy_data <- toy_data %>%
mutate(with_formula = -0.4*1 + 2.8*x) %>%
mutate(with_predict= predict(model, toy_data))

toy_data %>%
ggplot(aes(x = x, y = y)) +
geom_point() +
geom_line(aes(y = with_predict), color = "blue") +
theme_bw(base_size = 14)

4



5 Swim records

5.1 One input

If our model has a single input, it is likely the intercept term, a constant (not variable)
capturing the typical value of the response variable when all explanatory variables are zero.

6 Plot

50

60

70

80

90

1925 1950 1975 2000

year

tim
e

Model specification: 𝑦 = 𝑤1 ⋅ 1

Call:
lm(formula = time ~ 1, data = SwimRecords)

Coefficients:
(Intercept)

59.92

Fitted model: 𝑦 = 59.92 ⋅ 1

7 Data

5



year time sex with_formula with_predict
1905 65.80 M 59.92 59.92419
1908 65.60 M 59.92 59.92419
1910 62.80 M 59.92 59.92419
1912 61.60 M 59.92 59.92419
1918 61.40 M 59.92 59.92419
1920 60.40 M 59.92 59.92419
1922 58.60 M 59.92 59.92419
1924 57.40 M 59.92 59.92419
1934 56.80 M 59.92 59.92419
1935 56.60 M 59.92 59.92419
1936 56.40 M 59.92 59.92419
1944 55.90 M 59.92 59.92419
1947 55.80 M 59.92 59.92419
1948 55.40 M 59.92 59.92419
1955 54.80 M 59.92 59.92419
1957 54.60 M 59.92 59.92419
1961 53.60 M 59.92 59.92419
1964 52.90 M 59.92 59.92419
1967 52.60 M 59.92 59.92419
1968 52.20 M 59.92 59.92419
1970 51.90 M 59.92 59.92419
1972 51.22 M 59.92 59.92419
1975 50.59 M 59.92 59.92419
1976 49.44 M 59.92 59.92419
1981 49.36 M 59.92 59.92419
1985 49.24 M 59.92 59.92419
1986 48.74 M 59.92 59.92419
1988 48.42 M 59.92 59.92419
1994 48.21 M 59.92 59.92419
2000 48.18 M 59.92 59.92419
2000 47.84 M 59.92 59.92419
1908 95.00 F 59.92 59.92419
1910 86.60 F 59.92 59.92419
1911 84.60 F 59.92 59.92419
1912 78.80 F 59.92 59.92419
1915 76.20 F 59.92 59.92419
1920 73.60 F 59.92 59.92419
1923 72.80 F 59.92 59.92419
1924 72.20 F 59.92 59.92419
1926 70.00 F 59.92 59.92419
1929 69.40 F 59.92 59.92419
1930 68.00 F 59.92 59.92419
1931 66.60 F 59.92 59.92419
1933 66.00 F 59.92 59.92419
1934 65.40 F 59.92 59.92419
1936 64.60 F 59.92 59.92419
1956 62.00 F 59.92 59.92419
1958 61.20 F 59.92 59.92419
1960 60.20 F 59.92 59.92419
1962 59.50 F 59.92 59.92419
1964 58.90 F 59.92 59.92419
1972 58.50 F 59.92 59.92419
1973 57.54 F 59.92 59.92419
1974 56.96 F 59.92 59.92419
1976 55.65 F 59.92 59.92419
1978 55.41 F 59.92 59.92419
1980 54.79 F 59.92 59.92419
1986 54.73 F 59.92 59.92419
1992 54.48 F 59.92 59.92419
1994 54.01 F 59.92 59.92419
2000 53.77 F 59.92 59.92419
2004 53.52 F 59.92 59.92419

6



8 Code

model <- lm(time ~ 1, data = SwimRecords)

SwimRecords_predict <- SwimRecords %>%
mutate(with_formula = 59.92*1) %>%
mutate(with_predict= predict(model, SwimRecords))

SwimRecords_predict %>%
ggplot(aes(x = year, y = time)) +
geom_point() +
geom_line(aes(y = with_predict), color = "blue") +
theme_bw(base_size = 14)

8.1 Two inputs

We can add another term to our model represnting the effect of year on record time. This is
a main term or main effect, which represents the effect of each explanatory variable on the
response variable directly. In other words, how does record time change as a result of changes
in year, when all other explanatory variables are zero?

9 Plot

50

60

70

80

90

1925 1950 1975 2000

year

tim
e

Model specification: 𝑦 = 𝑤1 ⋅ 1 + 𝑤2 ⋅ year

7



Call:
lm(formula = time ~ 1 + year, data = SwimRecords)

Coefficients:
(Intercept) year

567.2420 -0.2599

Fitted model: 𝑦 = 567.2420 ⋅ 1 + −0.2599 ⋅ year

10 Data

11 Code

model <- lm(time ~ 1 + year, data = SwimRecords)

SwimRecords_predict <- SwimRecords %>%
mutate(with_formula = 567.2420*1 + -0.2599*year) %>%
mutate(with_predict= predict(model, SwimRecords))

SwimRecords_predict %>%
ggplot(aes(x = year, y = time)) +
geom_point() +
geom_line(aes(y = with_predict), color = "blue") +
theme_bw(base_size = 14)

11.1 Three inputs

We can see that the previous model allowed us to capture the effect of year on record time,
but we still have some unexplained variation. We can include sex in the model to capture the
difference in record times by sex.

8



year time sex with_formula with_predict
1905 65.80 M 72.1325 72.17614
1908 65.60 M 71.3528 71.39651
1910 62.80 M 70.8330 70.87676
1912 61.60 M 70.3132 70.35700
1918 61.40 M 68.7538 68.79774
1920 60.40 M 68.2340 68.27798
1922 58.60 M 67.7142 67.75823
1924 57.40 M 67.1944 67.23848
1934 56.80 M 64.5954 64.63971
1935 56.60 M 64.3355 64.37983
1936 56.40 M 64.0756 64.11995
1944 55.90 M 61.9964 62.04093
1947 55.80 M 61.2167 61.26130
1948 55.40 M 60.9568 61.00143
1955 54.80 M 59.1375 59.18229
1957 54.60 M 58.6177 58.66253
1961 53.60 M 57.5781 57.62302
1964 52.90 M 56.7984 56.84339
1967 52.60 M 56.0187 56.06376
1968 52.20 M 55.7588 55.80388
1970 51.90 M 55.2390 55.28413
1972 51.22 M 54.7192 54.76438
1975 50.59 M 53.9395 53.98474
1976 49.44 M 53.6796 53.72487
1981 49.36 M 52.3801 52.42548
1985 49.24 M 51.3405 51.38597
1986 48.74 M 51.0806 51.12610
1988 48.42 M 50.5608 50.60634
1994 48.21 M 49.0014 49.04708
2000 48.18 M 47.4420 47.48782
2000 47.84 M 47.4420 47.48782
1908 95.00 F 71.3528 71.39651
1910 86.60 F 70.8330 70.87676
1911 84.60 F 70.5731 70.61688
1912 78.80 F 70.3132 70.35700
1915 76.20 F 69.5335 69.57737
1920 73.60 F 68.2340 68.27798
1923 72.80 F 67.4543 67.49835
1924 72.20 F 67.1944 67.23848
1926 70.00 F 66.6746 66.71872
1929 69.40 F 65.8949 65.93909
1930 68.00 F 65.6350 65.67921
1931 66.60 F 65.3751 65.41934
1933 66.00 F 64.8553 64.89958
1934 65.40 F 64.5954 64.63971
1936 64.60 F 64.0756 64.11995
1956 62.00 F 58.8776 58.92241
1958 61.20 F 58.3578 58.40266
1960 60.20 F 57.8380 57.88290
1962 59.50 F 57.3182 57.36315
1964 58.90 F 56.7984 56.84339
1972 58.50 F 54.7192 54.76438
1973 57.54 F 54.4593 54.50450
1974 56.96 F 54.1994 54.24462
1976 55.65 F 53.6796 53.72487
1978 55.41 F 53.1598 53.20511
1980 54.79 F 52.6400 52.68536
1986 54.73 F 51.0806 51.12610
1992 54.48 F 49.5212 49.56683
1994 54.01 F 49.0014 49.04708
2000 53.77 F 47.4420 47.48782
2004 53.52 F 46.4024 46.44831

9



12 Plot

50

60

70

80

90

1925195019752000

year

tim
e

sex

F

M

Model specification: 𝑦 = 𝑤1 ⋅ 1 + 𝑤2 ⋅ year + 𝑤3 ⋅ sex

Call:
lm(formula = time ~ 1 + year + sex, data = SwimRecords)

Coefficients:
(Intercept) year sexM

555.7168 -0.2515 -9.7980

Fitted model: 𝑦 = 555.7168 ⋅ 1 + −0.2515 ⋅ year + −9.7980 ⋅ sex

13 Data

14 Code

model <- lm(time ~ 1 + year + sex, data = SwimRecords)

SwimRecords_predict <- SwimRecords %>%
mutate(sex_numeric = case_when(

10



year time sex sex_numeric with_formula with_predict
1905 65.80 M 1 66.8113 66.88051
1908 65.60 M 1 66.0568 66.12612
1910 62.80 M 1 65.5538 65.62319
1912 61.60 M 1 65.0508 65.12026
1918 61.40 M 1 63.5418 63.61148
1920 60.40 M 1 63.0388 63.10855
1922 58.60 M 1 62.5358 62.60563
1924 57.40 M 1 62.0328 62.10270
1934 56.80 M 1 59.5178 59.58806
1935 56.60 M 1 59.2663 59.33660
1936 56.40 M 1 59.0148 59.08513
1944 55.90 M 1 57.0028 57.07343
1947 55.80 M 1 56.2483 56.31903
1948 55.40 M 1 55.9968 56.06757
1955 54.80 M 1 54.2363 54.30732
1957 54.60 M 1 53.7333 53.80440
1961 53.60 M 1 52.7273 52.79854
1964 52.90 M 1 51.9728 52.04415
1967 52.60 M 1 51.2183 51.28976
1968 52.20 M 1 50.9668 51.03830
1970 51.90 M 1 50.4638 50.53537
1972 51.22 M 1 49.9608 50.03244
1975 50.59 M 1 49.2063 49.27805
1976 49.44 M 1 48.9548 49.02659
1981 49.36 M 1 47.6973 47.76927
1985 49.24 M 1 46.6913 46.76341
1986 48.74 M 1 46.4398 46.51195
1988 48.42 M 1 45.9368 46.00902
1994 48.21 M 1 44.4278 44.50024
2000 48.18 M 1 42.9188 42.99146
2000 47.84 M 1 42.9188 42.99146
1908 95.00 F 0 75.8548 75.92408
1910 86.60 F 0 75.3518 75.42115
1911 84.60 F 0 75.1003 75.16969
1912 78.80 F 0 74.8488 74.91822
1915 76.20 F 0 74.0943 74.16383
1920 73.60 F 0 72.8368 72.90651
1923 72.80 F 0 72.0823 72.15212
1924 72.20 F 0 71.8308 71.90066
1926 70.00 F 0 71.3278 71.39773
1929 69.40 F 0 70.5733 70.64334
1930 68.00 F 0 70.3218 70.39188
1931 66.60 F 0 70.0703 70.14041
1933 66.00 F 0 69.5673 69.63749
1934 65.40 F 0 69.3158 69.38602
1936 64.60 F 0 68.8128 68.88310
1956 62.00 F 0 63.7828 63.85382
1958 61.20 F 0 63.2798 63.35090
1960 60.20 F 0 62.7768 62.84797
1962 59.50 F 0 62.2738 62.34504
1964 58.90 F 0 61.7708 61.84211
1972 58.50 F 0 59.7588 59.83040
1973 57.54 F 0 59.5073 59.57894
1974 56.96 F 0 59.2558 59.32748
1976 55.65 F 0 58.7528 58.82455
1978 55.41 F 0 58.2498 58.32162
1980 54.79 F 0 57.7468 57.81869
1986 54.73 F 0 56.2378 56.30991
1992 54.48 F 0 54.7288 54.80113
1994 54.01 F 0 54.2258 54.29820
2000 53.77 F 0 52.7168 52.78942
2004 53.52 F 0 51.7108 51.78357

11



sex == 'M' ~ 1,
sex == 'F' ~ 0

)) %>%
mutate(with_formula = 555.7168*1 + -0.2515*year + -9.7980 *sex_numeric) %>%
mutate(with_predict= predict(model, SwimRecords))

SwimRecords_predict %>%
ggplot(aes(x = year, y = time, shape = sex)) +
geom_point() +
geom_line(aes(y = with_predict), color = "blue") +
theme_bw(base_size = 14)

14.1 Interaction

Notice that the previous model now gets us record times getting faster by year, and different
predictions for men and women (women have slower times). But this is missing another
relationship we can see in our data: that women are getting faster, faster. To express that
the effect of one explanatory variable on the response variable is different at different values
of another explanatory variable (e.g. the effect of year on record times is different for men
and women), we add a term to the model in which we multiply the values of the interacting
variables.

We could say that we “expand the input space” of the model, since we add terms to capture the
interaction

12



15 Plot

50

60

70

80

90

1925195019752000

year

tim
e

sex

F

M

Model specification: 𝑦 = 𝑤1 ⋅ 1 + 𝑤2 ⋅ year + 𝑤3 ⋅ sex + 𝑤4 ⋅ year × sex

Call:
lm(formula = time ~ 1 + year * sex, data = SwimRecords)

Coefficients:
(Intercept) year sexM year:sexM

697.3012 -0.3240 -302.4638 0.1499

Fitted model:

𝑦 =697.3012 ⋅ 1 + −0.3240 ⋅ year + −302.4638 ⋅ sex (1)
+ 0.1499 ⋅ year × sex (2)

16 Data

13



year time sex with_predict
1905 65.80 M 63.12106
1908 65.60 M 62.59867
1910 62.80 M 62.25041
1912 61.60 M 61.90215
1918 61.40 M 60.85738
1920 60.40 M 60.50912
1922 58.60 M 60.16086
1924 57.40 M 59.81260
1934 56.80 M 58.07131
1935 56.60 M 57.89718
1936 56.40 M 57.72305
1944 55.90 M 56.33002
1947 55.80 M 55.80763
1948 55.40 M 55.63350
1955 54.80 M 54.41459
1957 54.60 M 54.06634
1961 53.60 M 53.36982
1964 52.90 M 52.84743
1967 52.60 M 52.32504
1968 52.20 M 52.15091
1970 51.90 M 51.80266
1972 51.22 M 51.45440
1975 50.59 M 50.93201
1976 49.44 M 50.75788
1981 49.36 M 49.88723
1985 49.24 M 49.19072
1986 48.74 M 49.01659
1988 48.42 M 48.66833
1994 48.21 M 47.62355
2000 48.18 M 46.57878
2000 47.84 M 46.57878
1908 95.00 F 79.02170
1910 86.60 F 78.37361
1911 84.60 F 78.04956
1912 78.80 F 77.72552
1915 76.20 F 76.75338
1920 73.60 F 75.13315
1923 72.80 F 74.16101
1924 72.20 F 73.83697
1926 70.00 F 73.18887
1929 69.40 F 72.21674
1930 68.00 F 71.89269
1931 66.60 F 71.56864
1933 66.00 F 70.92055
1934 65.40 F 70.59651
1936 64.60 F 69.94842
1956 62.00 F 63.46750
1958 61.20 F 62.81941
1960 60.20 F 62.17131
1962 59.50 F 61.52322
1964 58.90 F 60.87513
1972 58.50 F 58.28276
1973 57.54 F 57.95872
1974 56.96 F 57.63467
1976 55.65 F 56.98658
1978 55.41 F 56.33849
1980 54.79 F 55.69040
1986 54.73 F 53.74612
1992 54.48 F 51.80185
1994 54.01 F 51.15375
2000 53.77 F 49.20948
2004 53.52 F 47.91330

14



17 Code

model <- lm(time ~ 1 + year * sex, data = SwimRecords)

SwimRecords_predict <- SwimRecords %>%
mutate(with_predict= predict(model, SwimRecords))

SwimRecords_predict %>%
ggplot(aes(x = year, y = time, shape = sex)) +
geom_point() +
geom_line(aes(y = with_predict), color = "blue") +
theme_bw(base_size = 14)

17.1 Transformation

Now our model is doing a great job at predicting our data, but there may be more we want
to do. For example, we can see that the model is not predicting women very well around the
year 2000 (it is predicting they will be faster than they are). If we want to allow the model
to have a curve shape, capturing that women gained on men for a while, but are no slowing
down, we can add a term to the model in which we square the year. This allows us to capture
this nonlinear curve or bend in the data (more on this for polynomials in the next section).

but notice that the model is fitting the data well, but still behaving a bit non-sensical toward
the 2000s, predicint that record times are getter slower! Impossible!)

15



18 Plot

50

60

70

80

90

1925195019752000

year

tim
e

sex

F

M

Model specification:

𝑦 =𝑤1 ⋅ 1 + 𝑤2 ⋅ year + 𝑤3 ⋅ sex (3)
+ 𝑤4 ⋅ year × sex + 𝑤5 ⋅ year2 (4)

Call:
lm(formula = time ~ 1 + year * sex + I(year^2), data = SwimRecords)

Coefficients:
(Intercept) year sexM I(year^2) year:sexM
1.110e+04 -1.098e+01 -3.171e+02 2.729e-03 1.575e-01

Fitted model:

𝑦 =11100 ⋅ 1 + −10.98 ⋅ year + −317.1 ⋅ sex (5)
+ 0.1575 ⋅ year × sex + 0.002729 ⋅ year2 (6)

19 Data

16



year time sex with_predict
1905 65.80 M 66.81874
1908 65.60 M 65.55576
1910 62.80 M 64.74106
1912 61.60 M 63.94819
1918 61.40 M 61.70057
1920 60.40 M 60.99502
1922 58.60 M 60.31130
1924 57.40 M 59.64941
1934 56.80 M 56.66741
1935 56.60 M 56.39922
1936 56.40 M 56.13650
1944 55.90 M 54.23115
1947 55.80 M 53.60669
1948 55.40 M 53.40946
1955 54.80 M 52.18160
1957 54.60 M 51.87991
1961 53.60 M 51.34200
1964 52.90 M 50.99587
1967 52.60 M 50.69886
1968 52.20 M 50.61078
1970 51.90 M 50.45097
1972 51.22 M 50.31300
1975 50.59 M 50.14697
1976 49.44 M 50.10254
1981 49.36 M 49.96226
1985 49.24 M 49.94827
1986 48.74 M 49.95841
1988 48.42 M 49.99508
1994 48.21 M 50.23605
2000 48.18 M 50.67349
2000 47.84 M 50.67349
1908 95.00 F 82.16082
1910 86.60 F 81.03116
1911 84.60 F 80.47451
1912 78.80 F 79.92332
1915 76.20 F 78.30250
1920 73.60 F 75.71028
1923 72.80 F 74.22044
1924 72.20 F 73.73474
1926 70.00 F 72.77971
1929 69.40 F 71.38810
1930 68.00 F 70.93515
1931 66.60 F 70.48765
1933 66.00 F 69.60903
1934 65.40 F 69.17790
1936 64.60 F 68.33203
1956 62.00 F 61.07389
1958 61.20 F 60.46814
1960 60.20 F 59.88422
1962 59.50 F 59.32213
1964 58.90 F 58.78187
1972 58.50 F 56.83913
1973 57.54 F 56.62085
1974 56.96 F 56.40802
1976 55.65 F 55.99874
1978 55.41 F 55.61129
1980 54.79 F 55.24567
1986 54.73 F 54.27978
1992 54.48 F 53.51036
1994 54.01 F 53.29755
2000 53.77 F 52.79009
2004 53.52 F 52.56093

17



20 Code

model <- lm(time ~ 1 + year * sex + I(year^2), data = SwimRecords)

SwimRecords_predict <- SwimRecords %>%
mutate(with_predict= predict(model, SwimRecords))

SwimRecords_predict %>%
ggplot(aes(x = year, y = time, shape = sex)) +
geom_point() +
geom_line(aes(y = with_predict), color = "blue") +
theme_bw(base_size = 14)

21 Linearizing nonlinear models

When you want to linearlize a nonlinear model, you’re trying to fit a linear model to data that
doesn’t naturally follow a straight line. There are two common ways to approach this:

1. Expanding the input space with polynomials. Polynomials can capture “bumps” or
curves in the data. In this approach, we add terms to the model, like squares or cubes
of the original variable.

• 𝑦 = 𝑤1 + 𝑤2𝑥 + 𝑤3𝑥2

2. Transforming the data involves applying mathematical functions to existing inputs to
alter their scale or distributions. Common transformations include taking the logarithm
or square root. Taking the logarithm of a variable compresses its range and reduces
skewness in the data (as in the brain size and body weight data).

• both output and input: 𝑙𝑜𝑔(𝑦) = 𝑤1 + 𝑤2𝑙𝑜𝑔(𝑥)
• just input: 𝑦 = 𝑤1 + 𝑤2𝑙𝑜𝑔(𝑥)

22 Plant heights (polynomials)

Polynomials capture “bumps” or curves in the data, and the number of these bumps depends
on the degree of the polynomial. The higher the degree, the more complex the shape the
polynomial can represent.

18



• Degree 1 (Linear): A straight line. There are no bumps or curves. The relationship
between the predictor and the response is either increasing or decreasing at a constant
rate.

• Degree 2 (Quadratic): A single bump or curve. The graph is either a U-shape (bowl)
or an upside-down U-shape (hill), meaning it can capture one turning point.

• Degree 3 (Cubic): Can capture two bumps (or one “S” shaped curve). The graph can
have two turning points, meaning it can start by increasing, then decrease, and increase
again (or the opposite).

• Degree 4 (Quartic): Can capture three bumps or changes in direction. The graph
can have up to three turning points, allowing for more complex shapes and curves in the
data.

22.1 Degree 1 (Linear)

Remember, a Degree 1 (Linear) is a straight line. There are no bumps or curves. The
relationship between the predictor and the response is either increasing or decreasing at a
constant rate. This doesn’t seem to capture the relationship between light_exposure and
plant_height in our data.

19



23 Plot

25

50

75

0 3 6 9

light_exposure

pl
an

t_
he

ig
ht

Model specification: 𝑦 = 𝑤1 ⋅ 1 + 𝑤2 ⋅ x

Call:
lm(formula = plant_height ~ 1 + light_exposure, data = poly_plants)

Coefficients:
(Intercept) light_exposure

31.346 3.619

Fitted model: 𝑦 = 31.346 ⋅ 1 + 3.619 ⋅ 𝑥

24 Data

25 Code

poly_plants <- read_csv('https://kathrynschuler.com/datasci/assests/csv/polynomial_plants.csv')

model <- lm(plant_height ~ 1 + light_exposure, data = poly_plants)

20



plant light_exposure plant_height with_formula with_predict
Sunflower 0 10 31.346 31.34615
Sunflower 1 15 34.965 34.96504
Sunflower 2 25 38.584 38.58392
Rose 3 40 42.203 42.20280
Rose 4 55 45.822 45.82168
Rose 5 70 49.441 49.44056
Cactus 6 85 53.060 53.05944
Cactus 7 95 56.679 56.67832
Cactus 8 90 60.298 60.29720
Orchid 9 70 63.917 63.91608
Orchid 10 40 67.536 67.53496
Orchid 11 20 71.155 71.15385

poly_plants <- poly_plants %>%
mutate(with_formula = 31.346*1 + 3.619*light_exposure) %>%
mutate(with_predict= predict(model, poly_plants))

poly_plants %>%
ggplot(aes(x = light_exposure, y = plant_height)) +
geom_point() +
geom_line(aes(y = with_predict), color = "blue") +
theme_bw(base_size = 14)

25.1 Degree 2 (Quadratic)

In a Degree 2 (Quadratic) polynomial, we can express a single bump or curve. The graph is
either a U-shape (bowl) or an upside-down U-shape (hill), meaning it can capture one turning
point. This provides a better fit for our data, allow us to express the light exposure goes up
and then back down again. But it looks like there is another “bump” in the data, going back
upward around light exposure of 1 or 2.

21



26 Plot

0

25

50

75

100

0 3 6 9

light_exposure

pl
an

t_
he

ig
ht

Model specification: 𝑦 = 𝑤1 ⋅ 1 + 𝑤2 ⋅ x + 𝑤3 ⋅ x2

Call:
lm(formula = plant_height ~ 1 + light_exposure + I(light_exposure^2),

data = poly_plants)

Coefficients:
(Intercept) light_exposure I(light_exposure^2)

-9.245 27.973 -2.214

Fitted model: 𝑦 = −9.245 ⋅ 1 + 27.973 ⋅ x + −2.214 ⋅ x2

27 Data

28 Code

model <- lm(plant_height ~ 1 + light_exposure + I(light_exposure^2), data = poly_plants)

22



plant light_exposure plant_height with_predict
Sunflower 0 10 -9.244506
Sunflower 1 15 16.514735
Sunflower 2 25 37.845904
Rose 3 40 54.749001
Rose 4 55 67.224026
Rose 5 70 75.270979
Cactus 6 85 78.889860
Cactus 7 95 78.080669
Cactus 8 90 72.843407
Orchid 9 70 63.178072
Orchid 10 40 49.084665
Orchid 11 20 30.563187

poly_plants <- poly_plants %>%
mutate(with_predict= predict(model, poly_plants))

poly_plants %>%
ggplot(aes(x = light_exposure, y = plant_height)) +
geom_point() +
geom_line(aes(y = with_predict), color = "blue") +
theme_bw(base_size = 14)

28.1 Degree 3 (Cubic)

In a Degree 3 (Cubic) polynomial, we can capture two bumps (or one “S” shaped curve).
The graph can have two turning points, meaning it can start by increasing, then decrease, and
increase again (or the opposite). This captures the data quite nicely.

23



29 Plot

25

50

75

0 3 6 9

light_exposure

pl
an

t_
he

ig
ht

Model specification: 𝑦 = 𝑤1 ⋅ 1 + 𝑤2 ⋅ x + 𝑤3 ⋅ x2 + 𝑤4 ⋅ x3

Call:
lm(formula = plant_height ~ 1 + light_exposure + I(light_exposure^2) +

I(light_exposure^3), data = poly_plants)

Coefficients:
(Intercept) light_exposure I(light_exposure^2)

8.7363 2.7276 3.7796
I(light_exposure^3)

-0.3632

Fitted model: 𝑦 = 8.7363 ⋅ 1 + 2.7276 ⋅ x + 3.7796 ⋅ x2 + −0.3632 ⋅ x3

30 Data

31 Code

model <- lm(plant_height ~ 1 + light_exposure + I(light_exposure^2) + I(light_exposure^3), data = poly_plants)

24



plant light_exposure plant_height with_predict
Sunflower 0 10 8.736264
Sunflower 1 15 14.880120
Sunflower 2 25 26.403596
Rose 3 40 41.127206
Rose 4 55 56.871462
Rose 5 70 71.456877
Cactus 6 85 82.703963
Cactus 7 95 88.433233
Cactus 8 90 86.465202
Orchid 9 70 74.620380
Orchid 10 40 50.719281
Orchid 11 20 12.582418

poly_plants <- poly_plants %>%
mutate(with_predict= predict(model, poly_plants))

poly_plants %>%
ggplot(aes(x = light_exposure, y = plant_height)) +
geom_point() +
geom_line(aes(y = with_predict), color = "blue") +
theme_bw(base_size = 14)

32 Brain size (log)

32.1 Untransformed

When we have a nonlinear relationship, as here, we could just try to fit a linear model to the
untransformed data. It techincally works — there is no math reason that prevents us from
fitting this model — but we can see that it is a very bad description of the data.

25



33 Plot

0

2000

4000

6000

8000

0 50000 100000 150000

body_size_kg

br
ai

n_
si

ze
_c

c

Model specification: 𝑦 = 𝑤1 ⋅ 1 + 𝑤2 ⋅ body_size_kg

Call:
lm(formula = brain_size_cc ~ 1 + body_size_kg, data = brain_data)

Coefficients:
(Intercept) body_size_kg
816.59014 0.05021

Fitted model: 𝑦 = 816.59014 ⋅ 1 + 0.05021 ⋅ body_size_kg

34 Data

35 Code

brain_data <- read_csv('https://kathrynschuler.com/datasci/assests/csv/animal_brain_body_size.csv') %>%
rename(brain_size_cc = `Brain Size (cc)`, body_size_kg = `Body Size (kg)`)

model <- lm(brain_size_cc ~ 1 + body_size_kg, data = brain_data)

26



Species brain_size_cc body_size_kg with_predict
Mouse 0.4 2.0e-02 816.5911
Rat 2.0 2.5e-01 816.6027
Rabbit 12.0 1.5e+00 816.6655
Cat 25.0 4.5e+00 816.8161
Dog 50.0 1.0e+01 817.0923
Sheep 150.0 7.0e+01 820.1049
Pig 300.0 1.0e+02 821.6113
Goat 450.0 5.0e+01 819.1007
Gorilla 500.0 1.8e+02 825.6282
Horse 600.0 4.0e+02 836.6747
Human 1300.0 7.0e+01 820.1049
Chimpanzee 400.0 6.0e+01 819.6028
Dolphin 1500.0 2.0e+02 826.6324
Whale (Orca) 6000.0 5.0e+03 1067.6469
Elephant 6000.0 6.0e+03 1117.8583
Blue Whale 8000.0 1.5e+05 8348.2943
Giraffe 600.0 8.0e+02 856.7592
Rhinoceros 450.0 1.2e+03 876.8438
Walrus 400.0 8.0e+02 856.7592
Tiger 90.0 2.2e+02 827.6366
Kangaroo 50.0 6.0e+01 819.6028
Crocodile 200.0 4.0e+02 836.6747
Penguin 20.0 3.0e+01 818.0965

27



brain_data <- brain_data %>%
mutate(with_predict= predict(model, brain_data))

brain_data %>%
ggplot(aes(x = body_size_kg, y = brain_size_cc)) +
geom_point() +
geom_line(aes(y = with_predict), color = "blue") +
theme_bw(base_size = 14)

35.1 Log transformed

We can apply a log transform directly in the model specification provided to R. This works
great, but if we try to plot the fitted model on untransformed data (e.g. if we use brain_size_cc
and body_size_kg as our y and x aesthetics) something doesn’t seem quite right. Instead, we
should plot the data transformed to log as well, so the model predictions match the data.

36 Plot

0.0

2.5

5.0

7.5

10.0

0 5 10

log_body_size_kg

lo
g_

br
ai

n_
si

ze
_c

c

Model specification: 𝑙𝑜𝑔(𝑦) = 𝑤1 ⋅ 1 + 𝑤2 ⋅ 𝑙𝑜𝑔(body_size_kg)

Call:
lm(formula = log(brain_size_cc) ~ 1 + log(body_size_kg), data = brain_data)

28



Coefficients:
(Intercept) log(body_size_kg)

2.2042 0.6687

Fitted model: 𝑙𝑜𝑔(𝑦) = 2.2042 ⋅ 1 + 0.6687 ⋅ 𝑙𝑜𝑔(body_size_kg)

37 Data

Species brain_size_ccbody_size_kglog_brain_size_cclog_body_size_kgwith_predict
Mouse 0.4 2.0e-

02
-

0.9162907
-

3.9120230
-

0.4116321
Rat 2.0 2.5e-

01
0.6931472 -

1.3862944
1.2772249

Rabbit 12.0 1.5e+002.48490660.40546512.4753051
Cat 25.0 4.5e+003.21887581.50407743.2099046
Dog 50.0 1.0e+013.91202302.30258513.7438358
Sheep 150.0 7.0e+015.01063534.24849525.0449906
Pig 300.0 1.0e+025.70378254.60517025.2834853
Goat 450.0 5.0e+016.10924763.91202304.8200046
Gorilla 500.0 1.8e+026.21460815.19295695.6765155
Horse 600.0 4.0e+026.39692975.99146456.2104467
Human1300.0 7.0e+017.17011954.24849525.0449906
Chimpanzee400.0 6.0e+015.99146454.09434464.9419160
Dolphin1500.0 2.0e+027.31322045.29831745.7469660
Whale
(Orca)

6000.0 5.0e+038.69951478.51719327.8993037

Elephant6000.0 6.0e+038.69951478.69951478.0212150
Blue
Whale

8000.0 1.5e+058.987196811.918390610.1735527

Giraffe 600.0 8.0e+026.39692976.68461176.6739274
Rhinoceros450.0 1.2e+036.10924767.09007686.9450462
Walrus 400.0 8.0e+025.99146456.68461176.6739274
Tiger 90.0 2.2e+024.49980975.39362755.8106962
Kangaroo50.0 6.0e+013.91202304.09434464.9419160
Crocodile200.0 4.0e+025.29831745.99146456.2104467
Penguin 20.0 3.0e+012.99573233.40119744.4784353

29



38 Code

model <- lm(log(brain_size_cc) ~ 1 + log(body_size_kg), data = brain_data)

brain_data <- brain_data %>%
mutate(

log_brain_size_cc = log(brain_size_cc),
log_body_size_kg = log(body_size_kg)

) %>%
mutate(with_predict= predict(model, brain_data))

brain_data %>%
ggplot(aes(x = log_body_size_kg, y = log_brain_size_cc)) +
geom_point() +
geom_line(aes(y = with_predict), color = "blue") +
theme_bw(base_size = 14)

39 Further reading

• Ch 6: Language of models in Statistical Modeling

30

https://dtkaplan.github.io/SM2-bookdown/language-of-models.html

	``Toy'' data
	Plot
	Data
	Code

	Plot
	Data
	Code
	Swim records
	One input

	Plot
	Data
	Code
	Two inputs

	Plot
	Data
	Code
	Three inputs

	Plot
	Data
	Code
	Interaction

	Plot
	Data
	Code
	Transformation

	Plot
	Data
	Code
	Linearizing nonlinear models
	Plant heights (polynomials)
	Degree 1 (Linear)

	Plot
	Data
	Code
	Degree 2 (Quadratic)

	Plot
	Data
	Code
	Degree 3 (Cubic)

	Plot
	Data
	Code
	Brain size (log)
	Untransformed

	Plot
	Data
	Code
	Log transformed

	Plot
	Data
	Code
	Further reading

