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Still working on these

library(tidyverse)
library(modelr)
library(infer)
library(knitr)
library(parsnip)
library(optimg)
library(kableExtra)
theme_set(theme_classic(base_size = 12))

# setup data
data <- tibble(

experience = c(49, 69, 89, 99, 109),
rt = c(124, 95, 71, 45, 18)

)

Suppose that we have a set of data and we have specified the model we’d like to fit. The next
step is to fit the model to the data. That is, to find the best estimate of the free parameters
(weights) such that the model describes the data as well as possible.
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0.1 Fitting Models in R

We will fit linear models using three common methods. During model specification week, we
already started fitting models with lm() and infer. Today we will expand to include the
parsnip way.

1. lm(): This is the most basic and widely used function for fitting linear models. It di-
rectly estimates model parameters based on the ordinary least-squares method, providing
regression outputs such as coefficients, R-squared, etc.

2. infer package: This package focuses on statistical inference using tidyverse syntax. It
emphasizes hypothesis testing, confidence intervals, and bootstrapping, making it ideal
for inferential analysis.

3. parsnip package: Part of the tidymodels suite, parsnip provides a unified syntax
for various modeling approaches (linear, logistic, random forest, etc.). It separates the
model specification from the underlying engine, offering flexibility and consistency when
working across multiple machine learning algorithms.

Each method has its strengths: lm() for simplicity, infer for inferential statistics, and parsnip
for robust model flexibility across different algorithms. To illustrate, we can fit the data in the
figure above all 3 ways.
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# with lm()
lm(rt ~ 1 + experience, data = data)

Call:
lm(formula = rt ~ 1 + experience, data = data)

Coefficients:
(Intercept) experience

211.271 -1.695

# with infer
data %>%

specify(formula = rt ~ 1 + experience) %>%
fit()

# A tibble: 2 x 2
term estimate
<chr> <dbl>

1 intercept 211.
2 experience -1.69

# with parsnip
linear_reg() %>%

set_engine("lm") %>%
fit(rt ~ 1 + experience, data = data)

parsnip model object

Call:
stats::lm(formula = rt ~ 1 + experience, data = data)

Coefficients:
(Intercept) experience

211.271 -1.695

0.2 Goodness-of-fit

In order to find the best fitting free parameters, we first need to quantify what it means to fit
best. Sum of squared error (SSE) is one common approach, in which we take the differences
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between the data and the model fit – � also called the “error” or “residuals” – square those
differences, and then take their sum.

𝑆𝑆𝐸 = ∑𝑛
𝑖=𝑖(𝑑𝑖 − 𝑚𝑖)2

• 𝑛 is the number of data points
• 𝑑𝑖 is the 𝑖-th data point
• 𝑚𝑖 is the model fit for the 𝑖-th data point

Given this way of quantifying goodness-of-fit, our job is to figure out the set of parameter
values with the smallest possible sum of squared error. But how do we do that? There are
two common approaches:

1. Iterative Optimization - works for both linear and nonlinear models
2. Ordinary Least-Squares - works for linear models only

0.3 Iterative Optimization

In Iterative optimization, we think of finding the best fitting parameters as a search problem
in which we have a parameter space and a cost function (or a “loss” function). To find the best
fitting parameter estimates, we search through the space to find the point with the smallest
possible cost function.

• We already have a cost function: sum of squared error

– ∑𝑛
𝑖=𝑖(𝑑𝑖 − 𝑚𝑖)2

• We can visualize iterative optimization by plotting our cost function on the y-axis, and
our possible paramter weights on the x-axis (and z-axis, and higher dimensions as the
number of inputs goes up).

• We call this visualizeation the error surface
• If there is one parameter to estimate (one input to the model), the error surface will be

a curvy line.
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• If there are two parameters to estimate (two inputs to the model), the error surface will
be a bumpy sheet.

To search through the parameter space via iterative optimization, we could use any number
of iterative optimization algorithms. Many of them follow the same conceptual process (but
differ in precise implementation):

1. Start at some point on the error surface (initial seed)
2. Look at the error surface in a small region around that point
3. Take a step in some direction that reduces the error
4. Repeat steps 2-4 until improvements are very small (less than some very small predefined

number).
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If this feels too abstract, we can also understand iterative optimization with a simple metaphor:
suppose you were dropped from a plane or helicopter at a random spot in hilly terrain and
wanted to find the lowest point. You could solve this with iterative optimization:

1. Start at some point in the hilly terrain (inital seed)
2. Look around you to determine the direction in which the ground seems to be sloping

downward the most.
3. Take a small step downhill in that direction.
4. Repeat these steps until you reach a spot where all directions around you either ascend

or remain flat.

0.3.1 Gradient descent

Gradient descent is one such iterative optimization algorithm. We can implement gradient
descent in R with the optimg package to find the best fitting parameter estimates for our
model.

1. First we write our cost function — our own function in R! — which must take a data
argument (our data set) and a par parameter (a vector of parameter estimates we want
to test) to work with optimg.
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SSE <- function(data, par) {
data %>%

mutate(prediction = par[1] + par[2] * experience) %>%
mutate(error = prediction - rt) %>%
mutate(squared_error = error^2) %>%
with(sum(squared_error))

}

2. Then we pass our data, cost function, and initial seed paramters to the optimg function
to perform gradient descent.

optimg(
data = data, # our data
par = c(0,0), # our starting parameters
fn = SSE, # our cost function (which receives data and par)
method = "STGD" # our iterative optimization algorithm
)

$par
[1] 211.26155 -1.69473

$value
[1] 205.138

$counts
[1] 12

$convergence
[1] 0

We can compare optimg’s estimates to that of lm() to see that they are nearly identical:

lm(rt ~ 1 + experience, data = data)

Call:
lm(formula = rt ~ 1 + experience, data = data)

Coefficients:
(Intercept) experience

211.271 -1.695
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0.3.2 Nearly identical to lm()

Note that solving for the best fitting free parameters via iterative optimization gets us an
approximate value of the best fitting free parameters. Based on how the algorithm is imple-
mented, we might decide to stop iterating too early (because we are close enough to the point)
or even step over minimum point if our step size is too big.

0.3.3 Local minimum problem

A potential problem with iterative optimization algorithms is the risk of finding a local min-
imum. That is, we find a location on the error surface that is a minimum within some local
range (so our algorithm stops looking), but we are not at the absolute minimum (also called
the global minimum).

• For all linear models, the error surface is shaped like a bowl, so there is no risk of a
local minimum. As long as an algorithm can adjust parameters to reduce errors, we will
eventually be able to get to approximately the optimal solution. We can see this clearly
in the one or two parameter case (but it generalizes to higher dimensions as well).

Linear v. nonlinear model with one parameter:

Linear model with two parameters:
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0.4 Ordinary Least-Squares

Another way we can find the best fitting free parameters for linear (or linearizable nonlinear)
models is to use the Ordinary Least-Squares (OLS) estimate.

• In OLS, the best-fitting free parameters are found by solving a system of equations
(using matrix operations/linear algebra) which leads to a closed-form solution.

• This means that OLS provides exact values of the best-fitting parameters in one step (as
long as a few necessary conditions are met).

• We can contrast this with iterative optimization algorithms (like gradient descent) which
gradually adjust the model parameters over multiple iterations to minimize the error,
often requiring many steps to converge on approximate values of the best-fitting param-
eters.

In OLS, the goal is to model the relationship between input variables and the output variable
(𝑦) as a linear combination. We express this very generally in our favorite equation, where the
output (𝑦) is a weighted sum of inputs (𝑥𝑖).

• 𝑦 = ∑𝑛
𝑖=1 𝑤𝑖𝑥𝑖
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Recall that this general expression has many � aliases. That is, the linear model equation
can be expressed in many ways, but they are all this same thing:

1. in high school algebra: 𝑦 = 𝑎𝑥 + 𝑏.
2. in machine learning: 𝑦 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ... + 𝑤𝑛𝑥𝑛
3. in statistics: 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ... + 𝛽𝑛𝑥𝑛 + 𝜀
4. in matrix notation: 𝑦 = 𝑋𝑤 + 𝜀

The matrix notation is what allows us to appreciate that we can solve for the best fitting
free parameters with linear algebra. Let’s work this out for our data set predicting rt ~ 1 +
experience. We can express in matrix notation:

y = Xw + �

Where:

• y is the output vector (rt).
• X is the input matrix (experience with an intercept).
• w is the weight vector (parameter estimates including the intercept).
• 𝜖 is the vector of errors (residuals).

Because our data set is small, we can expand these to help you picture this visually a little
better:

1. Input Matrix X (intercept and experience):

X =
⎡
⎢
⎢
⎢
⎣

1 49
1 69
1 89
1 99
1 109

⎤
⎥
⎥
⎥
⎦

2. Output Vector, y (rt):

y =
⎡
⎢
⎢
⎢
⎣

124
95
71
45
18

⎤
⎥
⎥
⎥
⎦

3. Weight Vector, w (Unknown coefficients including intercept):
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w = [𝑤1
𝑤2

]

Putting it all together, the linear model equation becomes, where there is a vector of errors
(residuals), �.

⎡
⎢
⎢
⎢
⎣

124
95
71
45
18

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 49
1 69
1 89
1 99
1 109

⎤
⎥
⎥
⎥
⎦

[𝑤1
𝑤2

] +
⎡
⎢
⎢
⎢
⎣

𝜖1
𝜖2
𝜖3
𝜖4
𝜖5

⎤
⎥
⎥
⎥
⎦

It turns out that we can solve for the weight vector directly via the following equation:

w = (X⊤X)−1X⊤y

At this stage, we can take the mathematicians’ word for it that this provides an exact solution
to the best fitting parameter estimates.

Box 1: Summary of OLS solution

This is the end of the math we will uncover about the OLS in this course. However, those
of you who have taken linear algebra may appreciate the following abridged summary of
how we arrive at the closed form solution by minimizing the sum of squared errors. (If
you have not taken linear alegebra, you can safely skip this box. It’s not on the exam!).

w = (X⊤X)−1X⊤y

To derive this we (in brief):

1. Set Up the Linear Model: Start with the matrix equation y = Xw + �.
2. Define Residuals: Use � = y − Xw to express the errors.
3. Minimize SSE: Expand and differentiate the sum of squared errors, setting the

derivative to zero.
4. Derive Normal Equation: Arrive at the normal equation X⊤Xw = X⊤y.
5. Compute Weights: Solve for w using the closed-form solution.

This process provides the exact weights that best fit the linear model to the data.

We can demonstrate this with code:
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ols_matrix_way <- function(X, Y){
solve(t(X) %*% X) %*% t(X) %*% Y
}

We need to construct X and Y (must be matrices):

(response_matrix <- data %>% select(rt) %>% as.matrix())
(explanatory_matrix <- data %>% mutate(int = 1) %>% select(int, experience) %>% as.matrix())

rt
[1,] 124
[2,] 95
[3,] 71
[4,] 45
[5,] 18

int experience
[1,] 1 49
[2,] 1 69
[3,] 1 89
[4,] 1 99
[5,] 1 109

Then we can use our function to generate the OLS solution:

ols_matrix_way(explanatory_matrix, response_matrix)

rt
int 211.270690
experience -1.694828

Which is exactly the same as that returned by lm() (because lm is doing this!)

lm(rt ~ experience, data = data)

Call:
lm(formula = rt ~ experience, data = data)

Coefficients:
(Intercept) experience

211.271 -1.695

Importantly, if there are more regressors than data points, then there is no OLS solution. The
intuition for the underlying math is that if there are more weights than data points, there are
infinatly many solutions, all of which acheive zero error. The linear algebra fans among us
might appreciate that the xtx component of our equation is ill-defined in this case.

Here’a an example. Suppose we have the following dataset
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data2 <- tibble(
y = c(2, 5, 7),
x = c(1, 2, 3),
z = c(2, 4, 6),
a = c(6, 7, 8)

)

(model1 <- lm(y ~ 1 + x, data = data2))

Call:
lm(formula = y ~ 1 + x, data = data2)

Coefficients:
(Intercept) x

-0.3333 2.5000

(model2 <- lm(y ~ 1 + x + z + a, data = data2))

Call:
lm(formula = y ~ 1 + x + z + a, data = data2)

Coefficients:
(Intercept) x z a

-0.3333 2.5000 NA NA

lm() is smart and fits the reduced model it can fit. If we try to solve this the matrix way via
our homegrown function, we get an error.
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