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1 Model accuracy basics

We’ve selected a model (model selection) and fit a model to a set of data (model fitting). One
question we might want to ask next is how well does this model describe the data (model
accuracy)?

• We can visualize our data and the model fit to get a sense of how accurate the model is.
But we also want a way to quantify model accuracy – some metric by which to determine
whether a model is useful, or how it compares to other models.

• Last week we learned about one metric of model “goodness”, Sum of Squared Error
(SSE). We could certainly quantify our model accuracy with SSE, but it would be
difficult to interpret since it depends on the units of the data.

• Today we’ll learn about another metric, 𝑅2 which is easier to interpret and independent of
units. 𝑅2 quantifies the percentage of variance in our response variable that is explained
by our model.

2 Coefficient of determination, 𝑅2

The coefficient of determination, 𝑅2, quantifies the proportion of variance in the response
variable, 𝑦, that is explained by the model. Since you’ve already learned about Sum of
Squared Error (SSE) as a way to quantify how well a model fits the data, you already have
the tools to understand 𝑅2.

To obain 𝑅2 for a model, we compare the SSE of our model with the SEE of the simplest
possible model: y ~ 1 (the mean of the observed 𝑦 values). We call this simple model the
reference model in the 𝑅2 equation.

The equation for 𝑅2 is:

• 𝑅2 = 100 × (1 − ∑𝑛
𝑖=1(𝑦𝑖−𝑚𝑖)2

∑𝑛
𝑖=1(𝑦𝑖−𝑦)2 )
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Which is the same as saying:

• 𝑅2 = 100 × (1 − 𝑆𝑆𝐸𝑚𝑜𝑑𝑒𝑙
𝑆𝑆𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

)

Sometimes you will also see it expressed like this:

• 𝑅2 = 100 × (1 − 𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 )

Which helps us appreciate what the equation is doing in terms of SSE:

• The 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (denominator) is quantified as the sum of squared error in which we
substract the mean from the data (the simplest model’s prediction): ∑𝑛

𝑖=1(𝑦𝑖 − 𝑦)2. In
words, take each y value and subtract it from the mean y value, square it, then add them
all up.

• The 𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (numerator) is quantified as the sum of squared error in which
we subtract the model value from the data (residuals): ∑𝑛

𝑖=1(𝑦𝑖 − 𝑚𝑖)2. In words, take
each y value and subtract it from the model value (the model’s prediction) for that data
point, square it, then add them all up.

We then subtract the proportion 𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 from 1 to get the proportion of variance

that is explained, and then we multiply by 100 to turn it into the percent of variance ex-
plained.

• There is an upper bound of 100%: the situation where the model explains all the
variance (it matches the data exactly)

• There is technically no lower bound, since models can be arbitrarily bad. 0%
indicates the model explains none of the variance (it predicts the mean of the data but
nothing else)

3 𝑅2 overestimates model accuracy

One thing we can ask is how well the model describes our specific sample of data. But the
question we actually want to answer is how well does the model we fit describe the population
we are interested in.

• The problem is that we usually only have access to the sample we’ve collected and 𝑅2

tends to overestimate the accuracy of the model on the population. In other words,
the 𝑅2 of the model we fit on our sample will be larger than the 𝑅2 of the model fit to
the population.

• Further, the population is (usually) unknown to us. To quantify the true accuracy of
a fitted model – that is, how well the model describes the population, not the sample we
collected – we can use a technique called cross-validation.
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Before we learn about cross-validation, let’s first try to gain further conceptual understanding
of why 𝑅2 tends to overestimate model accuracy.

4 Overfitting

When you fit a model to some sample of data, there is always a risk of overfitting. As the
modeler, you have the freedom to fit your sample data better and better (you can add more
and more terms, increasing the 𝑅2 value). But you need to be careful not to fit the sample
data too well.

• This is because any given set of data contains not only the true, underlying patterns
we are interested in (the true model or signal), but also random variation (noise).
Fitting the sample data too well means we fit not only the signal but also the noise in
the data.

• An overfit model will perform really well on the data it has been trained on (the sample)
— we can even fit the sample perfectly if we add enough terms! - but an overfit model
will be bad at predicting new, unseen values. Image we collect an additional data point
drawn from the population. An overfit model would predict this point poorly!

• Our goal is to find the optimal fitted model – the one that gets as close to the true
model as possible without overfitting. But we have no way of knowing which part of the
data we sampled is signal and which part is noise. So, we use cross-validation to help
identify overfitting.

5 Model complexity

In the lecture on model specification, we briefly mentioned that we would also want to take
into consideration the complexity of the model. Simple models are easier to interpret but
may not capture all complexities in the data, while complex models can suffer from overfitting
the data or be difficult to interpret. Let’s expand on this in the context of model accuracy.

• Complex models have the potential to describe many kinds of functions, and the true
model — the model that most accurately describes the population we sampled our data
from — could be among them. However, complex models have a lot free parameters to
estimate (by definition, that’s what makes them complex!), which makes it more difficult
to obtain stable parameter estimates with small samples sizes or noisy data.

• Simple models are limited in the types of functions they can describe, so they may not
approximate the true model very accurately. However, they have fewer free parameters,
which makes it easier to obtain stable parameter estimates with small sample sizes or
noisy data.
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• We have no way of knowing a priori whether a simple or complex model will be more
accurate for a given dataset. It depends on many things, including the data we have, the
underlying relationships, and our research questions. Luckily, we can use cross-validation
to find out, trying different models and quantify each model’s accuracy.

6 Cross-validation

Remember from above, the question we actually want to answer with 𝑅2 is not how well does
the model we fit describe the sample we collected, but how well does the model we fit describe
the population we are interested in. But 𝑅2 on the sample will tend to overestimate the model’s
accuracy on the population. To estimate the accuracy of the model on the population, we need
to use a simple but powerful technique called cross-validation. Given a sample of data, there
are 3 simple steps to any cross-validation technique:

1. Leave some data out
2. Fit a model (to the data kept in)
3. Evaluate the model on the left out data (e.g. 𝑅2)

There are many ways to do cross-validation — reflecting that there are many ways we can
leave some data out — but they all follow this general 3-step process. We’ll focus on two
common approaches in this class:

• In leave-one-out cross-validation, we leave out a single data point and use the fitted
model to predict that single point. We repeat this process for every data point, then
evaluate each model’s prediction on the left out points (we can use 𝑅2!).

• In 𝑘-fold cross-validation, instead of leaving out a single data point, we randomly divide
the dataset into 𝑘 parts and use the fitted model to predict that part. We repeat this
process for every part, then evaluate each model’s prediction on the left out parts (again,
we can use 𝑅2!).

How do we decide which cross-validation approach to use? There are two trade-offs to con-
sider:

(1) How many iterations do we want to do? The more iterations, the more reliable our
accuracy estimate will be. But the more iterations, the more computational resources
are required.

(2) How much data do we want to use for each part? The more data we use to fit
the model, the more accurate the model will be and the more stable the parameter
estimates will be. But the more data we use in to estimate reliability, the more reliable
our accuracy estimate will be.
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• For example, in leave-one-out cross-validation we use a lot of iterations (one for each
data point), so we need a lot of computational resources, but we get to use almost all
the data to fit our model (all but one point!) and all the data to calculate 𝑅2.

• Keep in mind that the parameter estimates we obtain on each iteration will be different,
because they depend on both the model selected (stays the same each iteration) and the
data we fit with (changes each iteration). So the 𝑅2 we compute via cross-validation
really reflects an estimate of our model’s accuracy when fitted to a particular amount of
data.

7 Other methods

There are other ways to evaluate models beyond cross-validaiton.

One common way is using an F-test to determine whether a more complex model produces a
significantly better fit than a simpler one. This approach only applies for nested models, which
just means that one model is a simpler version of another more complex one.

You may also encounter AIC (Akaike Information Criterion) and BIC (Bayesian Infor-
mation Criterion), for example, which are parametric approaches that attempt to compare
different models and find the optimal fit (helping you avoid overfitting and excessively complex
models).

• In general AIC considers how well the model fits the data, the number of parameters,
and the sample size (there is a penalty for more complex models); BIC is similar but has
a stronger penalty for complex models (so will inherently favor simpler models).

• We’ll focus on cross-validation in this class, because it makes fewer assumptions
than metrics like AIC/BIC and is simpler to understand conceptually. But we’ll also
show you the F-test approach, since it’s widely used in the sciences.

8 F-test (via anova())

The F-test is closely related to 𝑅2. When comparing a simpler model to a more complex one,
the change in 𝑅2 can be evalutated using an F-test to see if adding predictors significantly
improves model fit. (often expresse as Δ𝑅2) Recall that, for 𝑅2, when we compared 𝑆𝑆𝐸𝑚𝑜𝑑𝑒𝑙
(the sum of squared error of our model) to 𝑆𝑆𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (the sum of squared error of the
intercept-only model), we noted that 𝑆𝑆𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is always going to be greater than 𝑆𝑆𝐸𝑚𝑜𝑑𝑒𝑙.
But what we actually want to know is whether it is significantly greater. Said another way,
we want to know whether adding terms to the model significantly improve the model’s ability
to explain the response variable.

Let 𝑅2
𝑠𝑖𝑚𝑝𝑙𝑒 be the 𝑅2 of the simpler model and 𝑅2

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 be the 𝑅2 of the more complex model.
The change in 𝑅2 (also called Δ𝑅2) is:
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• Δ𝑅2 = 𝑅2
𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝑅2

𝑠𝑖𝑚𝑝𝑙𝑒

We can then compute the F-statistic to determine if Δ𝑅2 is significant.

• 𝐹 = Δ𝑅2/𝑝
(1−𝑅2

𝑐𝑜𝑚𝑝𝑙𝑒𝑥/(𝑛−𝑘−1))

Where:

• 𝑝 is the number of additional predictors in the complex model
• 𝑛 is the total sample size
• 𝑘 is the number of predictors in the complex model

We can understand the numerator and denominator of this equation in the following way:

• The numerator represents the increase in explained variance per additional predictor.
• The denominator represents the remaining unexplained variance, adjusted for sample

size and the complexity of the model.

In R, we can perform this model comparison via and F-test via a call to anova():

model_int <- lm(RTlexdec ~ 1, english)
model_freq <- lm(RTlexdec ~ WrittenFrequency, english)
model_freqage <- lm(RTlexdec ~ WrittenFrequency + AgeSubject, english)
model_freqagelength <- lm(RTlexdec ~ WrittenFrequency + AgeSubject + LengthInLetters, english)

anova(model_int, model_freq, model_freqage, model_freqagelength)

Analysis of Variance Table

Model 1: RTlexdec ~ 1
Model 2: RTlexdec ~ WrittenFrequency
Model 3: RTlexdec ~ WrittenFrequency + AgeSubject
Model 4: RTlexdec ~ WrittenFrequency + AgeSubject + LengthInLetters
Res.Df RSS Df Sum of Sq F Pr(>F)

1 4567 112.456
2 4566 91.194 1 21.261 2772.1326 < 2e-16 ***
3 4565 35.053 1 56.141 7319.9087 < 2e-16 ***
4 4564 35.004 1 0.049 6.3563 0.01173 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If the F-statistic is large, it suggests that the additional predictors in the complex model
significantly improve model fit. To help you decide, anova() returns a p-value. You can
understand this p-value as asking: how likely it is to observe this value of F if we randomly
added this many predictors to our model?
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9 Back to model selection

Building models is itself an iterative process: we can use model accuracy obtained via cross-
validation to determine which model to select (as a way to find the elusive optimal model
fit).

Cross-validation seems preferable, as it makes fewer assumptions than these approaches and
is conceptually simpler. However, a drawback of cross-validation is that it is computationally
intensive.

Beyond model accuracy, there are other practical things one might want to consider when
selecting a model, such as ease of interpretation and availability of resources (the data you can
collect, the computing power you have, etc.)

10 Further reading
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