
Data wrangling
Katie Schuler

2024-09-10

Acknowledgement

These notes are adapted from Ch 5 Data tidying, Ch 7 Data import and Ch 4 Data
transformation in R for Data Science

Materials from lecture

• Tuesday: slides, demo, my_chicks.csv
• Thursday: slides and demo

1 Tidy

1.1 Welcome to the tidyverse

The tidyverse is an opinionated collection of R packages designed for data science.
All packages share an underlying design philosophy, grammar, and data structures.
~ Tidyverse package docs

The tidyverse collection of packages includes:

• ggplot2 - for data visualization
• dplyr - for data wrangling
• readr - for reading data
• tibble - for modern data frames
• stringr: for string manipulation
• forcats: for dealing with factors
• tidyr: for data tidying
• purrr: for functional programming

1

https://r4ds.hadley.nz/data-tidy
https://r4ds.hadley.nz/data-import
https://r4ds.hadley.nz/data-transform
https://r4ds.hadley.nz/data-transform
../slides/data-importing.qmd
https://colab.research.google.com/drive/1T4ZdEMSJiMyNdzm5Cg8FHi6JlfUzfrTN?usp=sharing
https://docs.google.com/spreadsheets/d/1pF5_h-I-3PLA1WWunt3lAjWJLJ5Avu-Om-xMTyaTsgw/edit?usp=sharing
../slides/data-transformation.qmd
https://colab.research.google.com/drive/1CAR9QPn-imYTmUiUZZixxuLABEG8KR1a?usp=sharing
https://www.tidyverse.org/

• lubridate: for working with dates and times

We load the tidyverse like any other package, with library(tidyverse). When we do, we
will receive a message with (1) a list packages that were loaded and (2) a warning that there
are potential conflicts with base R’s stats functions

• We can resolve conflicts with the :: operator, which allows us to specify which package
our intended function belongs to as a prefix: stats::filter() or dplyr::filter()

1.2 What is tidy data?

The same underlying data can be represented in a table in many different ways; some easier
to work with than others. The tidyverse makes use of tidy data principles to make datasets
easier to work with in R. Tidy data provides a standard way of structuring datasets:

1. each variable forms a column; each column forms a variable
2. each observation forms a row; each row forms an observation
3. value is a cell; each cell is a single value

Why is tidy data easier to work with?

• Because consistency and uniformity are very helpful when programming
• Variables as columns works well for vectorized languages (R!)

1.3 Functional programming with purrr

purrr enhances R’s functional programming (FP) toolkit by providing a complete
and consistent set of tools for working with functions and vectors. If you’ve never
heard of FP before, the best place to start is the family of map() functions which
allow you to replace many for loops with code that is both more succinct and easier
to read. ~ purrr docs

Let’s illustrate the joy of the tidyverse with one of its packages: purrr. The docs say that the
best place to start is the family of map() functions, so we’ll do that.

The map() functions:

1. take a vector as input
2. apply a function to each element
3. return a new vector

We say “functions” because there are 5, the generic map() function and map_*() variants for
each type of vector:

2

https://purrr.tidyverse.org/

• map()
• map_lgl()
• map_int()
• map_dbl()
• map_chr()

To illustrate, suppose we have a data frame df with 3 columns and we want to compute the
mean of each column. We could solve this with copy-and-paste (run mean() 3 different times)
or try to use a for loop, but map() can do this with just one line:

We use `map_dbl()` because `mean()` returns a *double* value
map_dbl(df, mean)

1.4 Modern data frames with tibble

A tibble, or tbl_df, is a modern reimagining of the data.frame, keeping what time
has proven to be effective, and throwing out what is not. Tibbles are data.frames
that are lazy and surly: they do less and complain more ~ tibble docs

Tibbles do less than data frames, in a good way:

• never changes type of input (never converts strings to factors!)
• never changes the name of variables
• only recycles vectors of length 1
• never creates row names

You can read more in the tibble vignette if you are interested, but understanding these differ-
ences is not necessary to be successful in the course. The take-away is that data.frame and
tibble sometimes behave differently. The behavior of tibble makes more sense for modern
data science, so we should us it instead!

Create a tibble with one of the following:

(1) coerce an existing object (e.g., a data frame) to tibble
as_tibble(x)

(2) construct a tibble from a column of vectors
tibble(x=1:5, y=1)

(3) define row-by-row, short for transposed tibble
tribble(

~x, ~y, ~z,
"a", 2, 3.6,

3

https://tibble.tidyverse.org/
https://tibble.tidyverse.org/articles/tibble.html

"b", 1, 8.5
)

We will encounter two main ways tibbles and data frames differ:

• printing - by default, tibbles print the first 10 rows and all columns that fit on screen,
making it easier to work with large datasets. Tibbles also report the type of each column
(e.g. <dbl>, <chr>)

• subsetting - tibbles are more strict than data frames, which fixes two quirks we encoun-
tered last lecture when subsetting with [[and $: (1) tibbles never do partial matching,
and (2) they always generate a warning if the column you are trying to extract does not
exist.

To test if something is a tibble or a data.frame:

• is_tibble(x)
• is.data.frame(x)

2 Import

Often we want to read in some data we’ve generated or collected outside of R. The most basic
and common format is plain-text rectangular files. We will “read” these into R with the
readr package.

2.1 Reading data with readr

The goal of readr is to provide a fast and friendly way to read rectangular data from
delimited files, such as comma-separated values (CSV) and tab-separated values
(TSV). It is designed to parse many types of data found in the wild, while providing
an informative problem report when parsing leads to unexpected results.

readr docs

We will use readr’s read_*() functions to read in our rectangular data files.

The read_*() functions have two important arguments:

• file - the path to the file (that reader will try to parse)
• col_types - column specification, a description of how each column should be con-

verted from a character vector to a specific data type

There are 7 supported file types, each with their own read_*() function:

• read_csv(): comma-separated values (CSV)

4

https://readr.tidyverse.org/

• read_tsv(): tab-separated values (TSV)
• read_csv2(): semicolon-separated values
• read_delim(): delimited files (CSV and TSV are important special cases)
• read_fwf(): fixed-width files
• read_table(): whitespace-separated files
• read_log(): web log files

To read .csv files, include a path and (optionally) a column specification in col_types:

(1) pass only the path; readr guesses col_types
read_csv(file='path/to/file.csv')

(2) include a column specification with col_types
read_csv(

file='path/to/file.csv',
col_types = list(x = col_string(), y = col_skip())

)

With no column specification, readr uses the the first 1000 rows to guess with a simple
heuristic:

• if column contains only T/F, logical
• if only numbers, double
• if ISO8601 standard, date or date-time
• otherwise string

There are 11 column types that can be specified:

• col_logical() - reads as boolean TRUE FALSE values
• col_integer() - reads as integer
• col_double() - reads as double
• col_number() - numeric parser that can ignore non-numbers
• col_character() - reads as strings
• col_factor(levels, ordered = FALSE) - creates factors
• col_datetime(format = "") - creates date-times
• col_date(format = "") - creates dates
• col_time(format = "") - creates times
• col_skip() - skips a column
• col_guess() - tries to guess the column

Some useful additional arguments:

• if there is no header (the top row containing column names), include col_names =
FALSE

• to provide a header, include col_names = c("x","y","z")

5

• to skip some lines, include skip = n, where n is number of lines to skip
• to select which columns to import, include col_select(x, y)
• to guess column types with all rows, include guess_max = Inf

Sometimes weird things happen. The most common problems are:

• column contains unexpected values - your dataset has a column that you expected
to be logical or double, but there is a typo somewhere, so R has coerced the column
into character. Solve by specifying the column type col_double() and then using the
problems() function to see where R failed.

• missing values are not NA - your dataset has missing values, but they were not coded
as NA as R expects. Solve by adding an na argument (e.g. na=c("N/A"))

• column names have spaces - your dataset has column names that include spaces,
breaking R’s naming rules. In these cases, R adds backticks (e.g. `brain size`); we
can use the rename() function to fix them. If we have a lot to rename and that gets
annoying, see janitor::clean_names().

Reading more complex file types requires functions outside the tidyverse:

• excel with readxl - see Spreadsheets in R for Data Science
• google sheets with googlesheets4 - see Spreadsheets in R for Data Science
• databases with DBI - see Databases in R for Data Science
• json data with jsonlite - see Hierarchical data in R for Data Science

2.2 Writing data

We can also write to a csv file with readr:

write_csv(our_tibble, "name_of_file.csv")

We pass the name of our tibble and the name of the file as arguments. In Google Colab, files
we write appear in the left side bar file menu.

3 Data transformation

Why do we need to transform data?

Visualization is an important tool for generating insight, but it’s rare that you get
the data in exactly the right form you need to make the graph you want. Often
you’ll need to create some new variables or summaries to answer your questions
with your data, or maybe you just want to rename the variables or reorder the
observations to make the data a little easier to work with.

6

https://r4ds.hadley.nz/spreadsheets#excel
https://r4ds.hadley.nz/spreadsheets#google-sheets
https://r4ds.hadley.nz/databases
https://r4ds.hadley.nz/rectangling

3.1 Data transformation with dplyr

All dplyr functions (verbs) share a common structure:

• 1st argument is always a data frame
• Subsequent arguments typically describe which columns to operate on (via their names)
• Output is always a new data frame

We can group dplyr functions based on what they operate on:

• rows - see section 3 Manipulating rows
• columns - see section 4 Manipulating columns
• groups - see section 5 Grouping and summarizing data frames
• tables - see section 6 Joining data frames

We can easily combine dplyr functions to solve complex problems:

• The pipe operator, |> takes the output from one function and passes it as input (the
first argument) to the next function.

• There is another version of the pipe, %>%. See the reading on data transformation if you
are curious about the difference.

In lecture, we will demonstrate with the 3 most common dplyr functions for manipulating
rows, manipulating columns, and grouping. But you should feel comfortable reading the
docs/resources to use others to solve unique problems.

3.2 Manipulating rows

filter() filters rows, allowing you to keep only some rows based on the values of the
columns.

• the first argument is a data frame (all dplyr verbs)
• subsequent arguments are the conditions that must be true to keep the row (using R’s

logical and comparison operators we learned in R basics!), e.g. filter(age > 18)
• a common filtering mistake is to use = instead of the logical operator ==!

arrange() arranges the rows in the order you specify based on column values (does not change
the number of rows, just changes their order)

• the first argument is a data frame (all dplyr verbs)
• subsequent arguments are a set of column names to order by
• note that the default order is ascending, but you can specify descending by wrapping

the column in the desc() function

distinct() finds unique rows in a dataset, but you can also provide column names

7

../notes/r-basics.qmd

• the first argument is a data frame
• optionally subsequent arguments provides column names to find the distinct combination

of some variables
• note that if you provide column names, distinct will only return those columns unless

you add the argument .keep_all=TRUE

3.3 Manipulating columns

mutate() adds new columns that are calculated from existing columns

• first argument is a data frame (all dplyr verbs)
• subsequent arguments are the new column name, an equals sign, followed by an expres-

sion you want to use to calculate the new value, e.g. difference=age_end - age_start
• by default new columns are added to the right, but the .before and .after arguments al-

lows you to add them before/after specific positions (by position number, e.g. .before=1
or by column name, e.g. before=age)

select() selects columns based on their names

• first argument is a data frame (all dplyr verbs)
• subsequent arguments can be the names of the columns you want to keep
• use the : operator to select everything from one column to another, e.g. age:height
• you can also use logical operators like & (and) or ! (not) to identify the subset of columns

you want to select, e.g. !age:height
• you can also rename columns within select by putting the name of the column and an

equals sign before the column you want to select, e.g. new_name=selected_column

rename() we’ve already seen this function when importing data. Rename is used when want
to keep all of our columns but rename one or more.

• first argument is a data frame (all dplyr verbs)
• subsequent arguments are the columns we would like to rename, e.g. new_colname=old_colname

3.4 Group and summarise

In addition to manipulating rows and columns in your dataset, dplyr also allows you to work
with groups

group_by() is used to divide your dataset into groups that are meaningful for your analysis.

• group_by() doesn’t change the data, but adds a groups attribute, which tells R that
subsequent operations will be performed by group

8

• you can tell if a data frame is grouped by the first line of the output (or with
attributes()!)

summarise() is often used after group_by() to calculate summary statistics on grouped data,
which returns a data frame with a single row for each group

• you can add any number of summary stats; usually you want to name them something
that makes sense for your analysis

• n() is a particularly useful summary stat to add to our list that returns a count
• use the argument na.rm=TRUE to compute the summary statistics with NAs removed

(remember they are contageous!)
• note that the returned data frame is iteself grouped, but in a quirky way, with one fewer

group (you may get a warning about this). You can add the argument .groups="drop"
to drop all groups or .groups="keep" to keep them all

• to avoid this quirk, summarise() also has a cool new .by argument that can be used
instead of calling group_by(), which always returns an ungrouped data frame.

ungroup() is used to remove the grouping attribute from a data frame

3.5 More advanced

There are a few more advanced techniques for transforming and tidying data that we won’t
cover now, but might be useful to you in your own research.

• joins - sometimes you have more than one dataset that you want to join into one. dplyr
also has functions for handling that. Learn more about joins

• pivots - sometimes your data doesn’t arrive in the tidy data form. The tidyr package
can help with pivot_longer() and pivot_wider(). Learn more about pivots

4 Further reading and references

Recommended further reading:

• Data tidying in R for Data Science
• Tibbles in R for Data Science
• Data import in R for Data Science
• readr cheatsheet
• Ch 4 Data transformation in R for Data Science textbook

Other references:

• Ch 20 Joins in R for Data Science textbook

9

../notes/r-basics.qmd#built-in-functions
https://r4ds.hadley.nz/data-transform#grouping-by-multiple-variables
https://r4ds.hadley.nz/joins
https://r4ds.hadley.nz/data-tidy
https://r4ds.hadley.nz/data-tidy
https://r4ds.had.co.nz/tibbles.html
https://r4ds.hadley.nz/data-import.html
https://rstudio.github.io/cheatsheets/html/data-import.html?_gl=1*1fxlvya*_ga*MTI4NTg4NDIzMy4xNjkyODg0OTA4*_ga_2C0WZ1JHG0*MTY5Mjg4NDkwNy4xLjAuMTY5Mjg4NDkwNy4wLjAuMA..
https://r4ds.hadley.nz/data-transform
https://r4ds.hadley.nz/joins

• Ch 6 Data tidying in R for Data Science textbook

10

https://r4ds.hadley.nz/data-tidy

	Materials from lecture
	Tidy
	Welcome to the tidyverse
	What is tidy data?
	Functional programming with purrr
	Modern data frames with tibble

	Import
	Reading data with readr
	Writing data

	Data transformation
	Data transformation with dplyr
	Manipulating rows
	Manipulating columns
	Group and summarise
	More advanced

	Further reading and references

