Lab 4: Sampling distribution Not graded, just practice

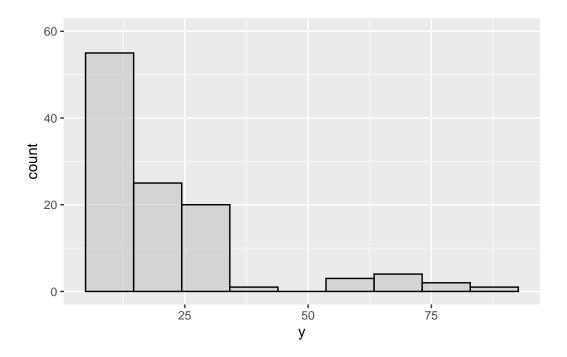
Katie Schuler

2024-09-19

Practice your new stats skills with these practice exam questions! Best to open a fresh Google Colab notebook and test things out! Refer to the study guide to find answers as well.

💡 Tip

More than one answer may be correct!


If you would like to practice with a set of data, you can import the following dataset with read_csv:

```
# brain volumes simulated from Ritchie et al
"http://kathrynschuler.com/datasets/brain_volume.csv"
```

0.1 Descriptive statistics

- (a) Which of the following is the best choice to visualize the frequency distribution of a set of data? Choose one.
 - (A) geom_rug()
 - (B) geom_histogram()
 - (C) geom_point()
 - (D) geom_smooth()
- (b) Which of the following would summarize the central tendency of a set of data? Choose all that apply.

- (A) mean
- (B) median
- (C) standard deviation
- (D) inter quartile range (IQR)
- (c) Which of the following would summarize the spread of a set of data? Choose all that apply
- (A) mean
- (B) median
- (C) standard deviation
- (D) inter quartile range (IQR)
- (d) Which of the following are paramteric statistics?
 - (A) mean
 - (B) median
 - (C) standard deviation
 - (D) inter quartile range (IQR)
- (e) Given the following figure, which summary statistics would best describe these data?

- (A) mean
- (B) median
- (C) standard deviation
- (D) inter quartile range (IQR)
- (f) Given the following code, which of the following would fill in the blank to return the value below which 20% of the data fall.

```
data %>% summarise(
    lower = quantile(y, ____)
)
    (A) 20
    (B) -20
    (C) below
```

• (D) 0.2

0.2 Probability distributions

(a) Write code to generate 200 data points, sampled from a gaussian distribution with a mean of 0 and a standard deviation of 1.

```
rnorm(200, mean = 0, sd = 1)
```

(b) Suppose you sampled 500 data points from a uniform distribution and stored the result in data. Then, you use the following code to compute the summary stats. What is the height of the probability density function at a value of 5?

```
data %>% summarise(
    n = n(),
    mean = mean(y),
    sd = sd(y),
    lower = quantile(y, 0),
    upper = quantile(y, 1)
)
# A tibble: 1 x 5
    n mean sd lower upper
    <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 500 7.52 1.39 5.01 10.0
```

- (c) Suppose your data is normally distributed and has a mean of 25 and a standard deviation of 5. What is the probability a random value drawn from your dataset will be less than 20? Select the closest value.
- (A) 0.0483
- (B) 0.1589
- (C) 1
- (D) 0

0.3 Sampling variability

- (a) True or false, the **parameter** is the mean of the population and the **parameter estimate** is the mean of your sample?
 - (A) TRUE
 - (B) FALSE
- (b) What do we call the probability distribution of the values our parameter estimate can take on?
- (c) Suppose we want to quantify the spread of the sampling distribution. What method could we choose? Choose all that apply.
- (A) mean
- (B) median
- (C) standard error
- (D) confidence interval
- (d) For a typical experiment, how many samples from the population is practical for us to take? Enter a number.

0.4 Bootstrapping

- (a) True or false, when we generate the bootstrap sampling distribution, we sample our original sample *with replacement*.
 - (A) TRUE
 - (B) FALSE
- (b) Suppose we want to generate the bootstrap sampling distribution for the mean of set of data, data, with one variable: reaction_time. Write code that uses the infer package to accomplish this, generating 1000 samples.

```
data %>%
    specify(response = reaction_time) %>%
    generate(reps = 1000, type = "bootstrap") %>%
    calculate(stat = "mean")
```

(c) Suppose we store our bootstrap sampling distribution from part b in a variable called bootstrap_distribution. Which two arguments should we add to the code below to compute the 68% confidence interval and assign it to the value ci?

```
ci <- bootstrap_distribution %>%
    get_confidence_interval(_____, ____)
```

- (A) type="se", level = 68
- (B) type="se", level = 0.68
- (C) type="percentage", level = 0.68
- (D) type="percentage", level = 68
- (d) Suppose we store our bootstrap sampling distribution in bootstrap_distribution and we want to visualize the confidence interval we just computed in c. Which of the following could we add to the code below? Choose all that apply.

bootstrap_distribution %>%
 visualize() +

- (A) get_confidence_interval(endpoints = ci)
- (B) shade_ci(endpoints = ci)
- (C) shade_confidence_interval(endpoints = ci)
- (D) get_ci(endpoints = ci)