
Exam 2
Data Science for Studying Language & the Mind

Instructions

The exam is worth 113 points. You have 1 hour and 30 minutes to complete the exam.

• The exam is closed book/note/computer/phone except for the provided reference sheets
• If you need to use the restroom, leave your exam and phone with the TAs
• If you finish early, you may turn in your exam and leave early

(5 points) Preliminary questions

Please complete these questions before the exam begins.

(a) (1 point) What is your full name?

(b) (1 point) What is your penn ID number?

(c) (1 point) What is your lab section TA’s name?

(d) (1 point) Who is sitting to your left?

(e) (1 point) Who is sitting to your right?
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1. (24 points) True or false

(a) (2 points) The goal of a regression model is to classify observations into distinct cate-
gories.

□ True
□ False

(b) (2 points) Model specification involves defining the functional form of the model.

□ True
□ False

(c) (2 points) The equation 𝑦 = 𝑎𝑥 + 𝑏 expresses 𝑦 as a weighted sum of inputs.

□ True
□ False

(d) (2 points) Regression is a type of supervised learning, while classification is unsuper-
vised.

□ True
□ False

(e) (2 points) In gradient descent, we search through all possible parameters in the param-
eter space.

□ True
□ False

(f) (2 points) The ordinary least squares solution is an example of an iterative optimization
algorithm.

□ True
□ False

(g) (2 points) Adding more predictors to a regression model will always increase the 𝑅2

value.

□ True
□ False

(h) (2 points) An overfit model performs poorly on both the sample and predicting new
values.

□ True
□ False
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(i) (2 points) A reliable model will always be a highly accurate model.

□ True
□ False

(j) (2 points) The error bars on our parameter estimates will become smaller as we increase
our sample size.

□ True
□ False

(k) (2 points) Support vector machines can be used for classification problems.

□ True
□ False

(l) (2 points) The logistic function always produces outputs between 0 and 1.

□ True
□ False
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2. (12 points) Model specification

Suppose we measure the reaction times (in milliseconds) of both native and non-native speakers
as they process words of varying frequency in English (measured as occurrences per million
words). We store these data in a tibble called rt_by_speaker. The first 6 rows of this tibble
are printed below for your reference.

# A tibble: 6 x 3
WordFrequency ReactionTime SpeakerType

<dbl> <dbl> <chr>
1 38.8 773. Non-native
2 45.4 754. Non-native
3 81.2 711. Non-native
4 51.4 495. Native
5 52.6 851. Non-native
6 84.3 719. Non-native

We’ve also included an exploratory plot of these data.
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Suppose we specify the following model with lm:

model <- lm(ReactionTime ~ 1 + WordFrequency + SpeakerType, data = rt_by_speaker)
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(a) (3 points) Write the model’s specification as a mathematical expression:

(b) (3 points) For each of the following, circle the option that best describes the type of
model we fit.

(i) (1 point) Supervised or unsupervised
(ii) (1 point) Regression or classification
(iii) (1 point) Linear or linearlizable nonlinear

(c) (3 points) Each of the figures below show a model’s predictions for these data plotted
with black lines. Circle the figure that is most likely to be the plot of the model spcified
to lm? Choose one.

400

500

600

700

800

900

0 25 50 75
WordFrequency

R
ea

ct
io

nT
im

e

SpeakerType

Native
Non−native

A

400

500

600

700

800

900

0 25 50 75
WordFrequency

R
ea

ct
io

nT
im

e

SpeakerType

Native
Non−native

B

400

500

600

700

800

900

0 25 50 75
WordFrequency

R
ea

ct
io

nT
im

e

SpeakerType

Native
Non−native

B

400

500

600

700

800

900

0 25 50 75
WordFrequency

R
ea

ct
io

nT
im

e

SpeakerType

Native
Non−native

D

5



(d) (3 points) Suppose we also fit the model with infer, which returns the parameter
estimates below. Which of the following could be the predicted reaction time for a
Native speaker with a word frequency of 10?

# A tibble: 3 x 2
term estimate
<chr> <dbl>

1 intercept 674.
2 WordFrequency -2.61
3 SpeakerTypeNon-native 240.

□ 647.9
□ 695.1
□ 887.9
□ Not enough information to determine this

You may show your work here, if you wish:
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3. (12 points) Applied model specification

Suppose we encounter the following dataset, glimpsed and plotted here.

Rows: 100
Columns: 2
$ x <dbl> -10.000000, -9.797980, -9.595960, -9.393939, -9.191919, -8.989899, -~
$ y <dbl> -1291.0476, -1190.0226, -945.7013, -1031.6017, -965.2677, -748.6480,~
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We specify and fit these data with lm as below:

lm(y ~ poly(x, 3) , data = data)

Call:
lm(formula = y ~ poly(x, 3), data = data)

Coefficients:
(Intercept) poly(x, 3)1 poly(x, 3)2 poly(x, 3)3

-63.97 3816.56 -514.32 1568.49
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(a) (2 points) What type of polynomial is included in the model specification?

□ Constant
□ Linear
□ Quadratic
□ Cubic
□ Quartic

(b) (3 points) Write the fitted model as a mathematical expression:

(c) (2 points) In class we learned about two ways to linearlize a nonlinear model. Which
option best describes what we have done here?

□ Expanding the input space by adding new terms
□ Transforming an existing term

(d) (2 points) Given the predicted model (shown with the black line on the figure), what
does the model predict for the value of 𝑦 when 𝑥 = 1?

(e) (3 points) Suppose we fit the model specification y ~ poly(x, 100). Explain why this
would be an overfit model.
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4. (13 points) Model fitting

Section 4 refers to the rt_by_speaker tibble from section 2. We have returned the first 6 rows
of the tibble here for your reference.

# A tibble: 6 x 3
WordFrequency ReactionTime SpeakerType

<dbl> <dbl> <chr>
1 38.8 773. Non-native
2 45.4 754. Non-native
3 81.2 711. Non-native
4 51.4 495. Native
5 52.6 851. Non-native
6 84.3 719. Non-native

Suppose we estimate the free parameters with optimg and lm, which return the following
results:

optimg(data = rt_by_speaker, par = c(0,0, 0), fn=SSE, method = "STGD")

$par
[1] 674.046758 -2.612294 240.353670

$value
[1] 244250.2

$counts
[1] 24

$convergence
[1] 0

lm(ReactionTime ~ 1 + WordFrequency + SpeakerType, data = rt_by_speaker)

Call:
lm(formula = ReactionTime ~ 1 + WordFrequency + SpeakerType,

data = rt_by_speaker)

Coefficients:
(Intercept) WordFrequency SpeakerTypeNon-native

674.052 -2.613 240.361
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(a) (2 points) Explain why optimg and lm return slightly different parameter estimates?

(b) (2 points) What is the cost function used by optimg? Choose one.

□ SSE
□ STGD
□ Gradient descent
□ 𝑅2

□ Not enough information to determine this

(c) (2 points) How many steps did our iterative optimization algorithm take?

(d) (2 points) What was the sum of squared error of the optimal parameters according to
optimg? Choose one.

□ 24
□ 0
□ 244250.2
□ 244250.22

□ Not enough information to determine this

(e) (2 points) Which approach does lm use to estimate the free parameters? Choose one.

□ Ordinary least-squares solution
□ Gradient descent
□ Another iterative optimzation algorith
□ All of the above

(f) (3 points) Given the model specified in the code to lm, fill in the missing values for the
first 6 rows of the input matrix X.
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5. (12 points) Model accuracy

Suppose we want to determine how accurate our model is for the rt_by_speaker dataset.
Section 5 refers to the following code and output.

First we specify and fit our model with lm and return the model summary.

model <- lm(ReactionTime ~ 1 + WordFrequency + SpeakerType, data = rt_by_speaker)
summary(model)

Call:
lm(formula = ReactionTime ~ 1 + WordFrequency + SpeakerType,

data = rt_by_speaker)

Residuals:
Min 1Q Median 3Q Max

-109.805 -31.329 -2.827 26.158 118.645

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 674.0520 15.4094 43.743 < 2e-16 ***
WordFrequency -2.6125 0.2796 -9.342 3.53e-15 ***
SpeakerTypeNon-native 240.3609 10.1616 23.654 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 50.18 on 97 degrees of freedom
Multiple R-squared: 0.8593, Adjusted R-squared: 0.8564
F-statistic: 296.2 on 2 and 97 DF, p-value: < 2.2e-16
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Then we perform cross-validation and return the validation metrics with collect_metrics()

set.seed(2)
splits <- vfold_cv(rt_by_speaker)

model_spec <-
linear_reg() %>%
set_engine(engine = "lm")

our_workflow <-
workflow() %>%
add_model(model_spec) %>%
add_formula(ReactionTime ~ 1 + WordFrequency + SpeakerType)

fitted_models <-
fit_resamples(

object = our_workflow,
resamples = splits
)

fitted_models %>%
collect_metrics()

# A tibble: 2 x 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>

1 rmse standard 50.7 10 2.19 Preprocessor1_Model1
2 rsq standard 0.865 10 0.0300 Preprocessor1_Model1

(a) (2 points) What is the 𝑅2 value for our original sample?

(b) (2 points) What is the 𝑅2 estimate for the population?

(c) (2 points) What kind of cross-validation did we perform? Choose one.

□ k-fold
□ boostrapping
□ leave-one out
□ Not enough information to determine this
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(d) (2 points) How many splits of our data does our code generate?

□ 1000
□ 100
□ 10
□ Not enough information to determine this

(e) (3 points) Explain the 3-step process that applies to all types of cross-validation.
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6. (12 points) Model reliability

Section 6 refers to two datasets: data_n10 and data_n200 which have 10 and 200 observations
respectively. Here we plot the data and the fitted model y ~ 1 + x for each dataset.
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Here we return the model summary for each.

Call:
lm(formula = y ~ x, data = data_n10)

Residuals:
Min 1Q Median 3Q Max

-1.8557 -0.6285 -0.0113 0.6370 1.5624

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.7548 0.3740 4.692 0.00156 **
x 0.7333 0.2862 2.562 0.03352 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.138 on 8 degrees of freedom
Multiple R-squared: 0.4508, Adjusted R-squared: 0.3821
F-statistic: 6.566 on 1 and 8 DF, p-value: 0.03352

Call:
lm(formula = y ~ x, data = data_n200)

Residuals:
Min 1Q Median 3Q Max

-3.6565 -0.6757 0.0689 0.6032 3.0019

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.91308 0.07233 26.448 < 2e-16 ***
x 0.50704 0.07236 7.007 3.72e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.021 on 198 degrees of freedom
Multiple R-squared: 0.1987, Adjusted R-squared: 0.1947
F-statistic: 49.1 on 1 and 198 DF, p-value: 3.724e-11
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(a) (2 points) Which model is more accurate? Choose one.

□ The model fitted to data_n10
□ The model fitted to data_n200
□ Both models are equally accurate
□ Not enough information to determine this

(b) (2 points) Which model is more reliable? Choose one.

□ The model fitted to data_n10
□ The model fitted to data_n200
□ Both models are equally reliable
□ Not enough information to determine this

(c) (2 points) Which value in the model summary quantifies the model’s reliability?

□ Multiple R-squared
□ Adjusted R-squared
□ Estimate
□ Std. Error
□ Pr(>|t|)

(d) (3 points) Suppose we bootstrap a 95% confidence interval for our parameter estimates
for the data_n10 dataset. What would happen if we changed the level of the confidence
interval to 68%? Choose one.

□ It would get smaller (narrower)
□ It would get bigger (wider)
□ It would stay the same

(e) (3 points) Explain why there is uncertainy on our model parameter estimates.
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7. (13 points) Classification

Suppose we want to predict the Fruit_Type (0 = apple, 1 = banana) based on its Weight,
Color (1 = red, 2 = yellow, 3 = green), and Diameter. Our data is stored in the tibble
fruit_data, glimpsed below.

Rows: 1,000
Columns: 4
$ Weight <int> 113, 149, 217, 142, 113, 217, 189, 190, 190, 191, 236, 198,~
$ Color <int> 3, 2, 1, 1, 1, 2, 1, 1, 3, 2, 3, 3, 3, 2, 1, 3, 2, 1, 3, 2,~
$ Diameter <dbl> 21.8, 13.4, 19.3, 19.7, 24.7, 24.2, 7.8, 18.3, 5.7, 14.9, 2~
$ Fruit_Type <dbl> 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,~

We fit this model with glm and return the following output:

glm(Fruit_Type ~ Weight + Color + Diameter, family = "binomial", data = fruit_data)

Call: glm(formula = Fruit_Type ~ Weight + Color + Diameter, family = "binomial",
data = fruit_data)

Coefficients:
(Intercept) Weight Color Diameter
-2.994585 0.001124 -0.005461 0.101965

Degrees of Freedom: 999 Total (i.e. Null); 996 Residual
Null Deviance: 1093
Residual Deviance: 1034 AIC: 1042
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(a) (3 points) For each of the following, circle the option that best describes the type of
model we fit.

(i) (1 point) Supervised or unsupervised
(ii) (1 point) Regression or classification
(iii) (1 point) Linear or linearlizable nonlinear

(b) (2 points) How many free parameters is this model estimating?

□ 1
□ 2
□ 3
□ 4
□ Not enough information to determine this

(c) (2 points) Which of the following parsnip specifications could specify and fit a general-
ized linear model?

□ linear_reg() %>% set_engine("lm")
□ logistic_reg() %>% set_engine("glm")
□ Both work

(d) (2 points) Which of the following expresses the link function for the glm we fit?

□ 𝑓(𝑎) = 1
1+𝑒−𝑎

□ ∑𝑛
𝑖=𝑖(𝑑𝑖 − 𝑚𝑖)2

□ 𝑦 = ∑𝑛
𝑖=1 𝑤𝑖𝑥𝑖

□ 𝑅2 = 100 × (1 − 𝑆𝑆𝐸𝑚𝑜𝑑𝑒𝑙
𝑆𝑆𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

)

(e) (2 points) What do we call the type of classification we performed via our glm?

□ linear regression
□ logistic regression
□ nearest-prototype regression
□ support vector machine

(f) (2 points) What accuracy metric is best applied to classification models?

□ 𝑅2

□ RMSE - root mean squared error
□ Percent correct
□ Adjusted 𝑅2
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