Solutions to

Exam 1

Data Science for Studying Language & the Mind

Instructions

The exam is worth 100 points. You have 1 hour and 30 minutes to complete the exam.

- The exam is closed book/note/computer/phone except for the provided reference sheets
- If you need to use the restroom, leave your exam and phone with the TAs
- If you finish early, you may turn in your exam and leave early

(5 points) Preliminary questions

Please complete these questions before the exam begins.

(a)	(1 point) What is your full name?
(b)	(1 point) What is your penn ID number?
(c)	(1 point) What is your lab section TA's name?
	Brittany or Wesley
(d)	(1 point) Who is sitting to your left?
(e)	(1 point) Who is sitting to your right?

1. (6 points) R basics: gener	1. ((6	points)	R	basics:	genera
-------------------------------	------	----	---------	---	---------	--------

(a) (2 points) Which of the following are expressions? Choose all that apply. x <- 5 mean(data) 4 + 2"Hello, world!" y <- 4 + mean(2) (b) (2 points) Which of the following occur in the code block below? Choose all that apply x <- sum(c(5, 3)) \square a message \square a comment a function a vector the assignment operator (c) (2 points) What additional step do we need to take to start a new R notebook in Google Colab with File > New notebook? Choose one. \square File > Download > Download .ipynb ☐ File > Download > Download .py Runtime > Change runtime type and select R. □ No further action needed; R is the default notebook for Google Colab.

2. (16 points) R basics: vectors, operations, subsetting

(a) (3 points) Use the seq() function to write an expression that would return the vector 100 200 300 400 500 and store it as my_vector

```
my_vector <- seq(100, 500, by = 100)
```

(b) (2 points) Suppose you run the following code. What will typeof(x) return and why? Choose one.

```
x <- c(30, 40, 50, "sixty", 70, 80)

double due to implicit coercion
double due to explicit coercion
character due to implicit coercion
character due to explicit coercion
Error: vectors must be atomic
```

(c) (2 points) What will the following code block return? Choose one.

```
x <- 50:60
typeof(x)

integer
double
matrix
vector</pre>
```

(d) (3 points) Suppose you run the following code. What will be returned? Choose one.

```
c(1, 2, 3) * c(1, 2, 3)

2 4 6
1 4 9
1 1 2 3 2 4 6 3 6 9
2 3 4 3 4 5 3 5 6
Error: non-numeric argument to binary operator
```

(e) (2 points) Suppose you run the following code. What will x[c(2,4)] return? Write your answer in the box below and show your work.

```
x < - seq(1, 10, by = 2)
```

```
x is 1 3 5 7 9. x[c(2,4)] takes the 2nd and 4th elements: 3 and 7.
```

- (f) (2 points) In R, how are complex objects like matrices or arrays built? Choose one.
 - \Box lists with named elements
 - vectors with attributes
 - \square arrays of numbers
 - \square nested loops
 - \square none of the above
- (g) (2 points) Suppose we run the following code. What will is.na(x) return? Choose one.

```
x <- c("apple", NA, "na", "orange")

□ TRUE
□ FALSE
```

- FALSE TRUE FALSE FALSE
- ☐ FALSE TRUE TRUE FALSE
- \square 2

3. (14 points) Data visualization: basics

Suppose we measure the reaction times (in milliseconds) of both native and non-native speakers as they process words of varying frequency (measured as occurrences per million words). We store these data in a tibble called rt_by_speaker. The first 6 rows of this tibble are printed below for your reference.

A tibble: 6 x 3 WordFrequency ReactionTime SpeakerType <dbl> <dbl> <chr> 1 38.8 773. Non-native 2 45.4 754. Non-native 3 81.2 711. Non-native 4 51.4 495. Native 52.6 851. Non-native 5 6 84.3 719. Non-native

Suppose we run the following code to visualize the data.

```
ggplot(
    rt_by_speaker,
    aes(x = WordFrequency, y = ReactionTime, color = SpeakerType)
) +
    geom_point(color = "black") +
    geom_smooth(method = "lm")
```

(a) (2 points) Which of the following plots will be returned? Choose one.

 \square There is not enough information to distinguish

(b)	(2 points) In the code above, which of the following correctly describes which aesthetics are mapped and which are set? Choose one.
	 Color is mapped to SpeakerType and the points are set to black. □ Color is set to SpeakerType and the points are mapped to black. □ Both aesthetics are mapped. □ Both aesthetics are set.
(c)	(2 points) In the code above, which of the following correctly describes which aesthetics are global and which are local? Choose one.
	 Color is mapped to the SpeakerType variable globally, and set to black locally. □ Color is mapped to the SpeakerType variable locally, and set to black globally. □ Both are global □ Both are local
(d)	(2 points) When ggplot2 maps a categorical variable to an aesthetic, it automatically assigns a unique value of the aesthetic to each level of the variable. True or false, this process is called <i>scaling</i> .
	☐ True ☐ False

(e) (6 points) Suppose we wanted to plot a histogram of the ReactionTime variable in the rt_by_speaker dataset. Fill in the blanks below such that plot C is returned.

```
___a___ %>%
    ggplot(aes( ___b__ = ReactionTime) ) +
    geom_histogram(
        fill = "lightgray",
        color = "black",
        bins = ___c___)
```


(i) (2 points) Fill in blank a.

rt_by_speaker

(ii) (2 points) Fill in blank b.

X

(iii) (2 points) Fill in blank c.

6

4. (8 points) Data visualization: layers

- (a) (2 points) Which of the following layers must be present in the code that generated plot D above? Choose one.
 - □ coord_flip()
 - □ scale_group_manual(values = c("Native", "Non-native"))
 - ☐ facet_grid(SpeakerType ~ .)
 - facet_grid(. ~ SpeakerType)
 - ☐ facet_grid(Native ~ Non-native)
- (b) (2 points) In plot D above, which of the following layers could be added to change the y-axis label to RT? Choose one.

 - \square labs(x = "RT")
 - ☐ t + annotate(geom="text", y = ReactionTime, text = "RT")
 - t + labs(y = "RT")
 Full credit given for this
 answer too, since some assumed
 t was the prior plot.

(c)	(2 points) In plot D above, which of the following aesthetics should we set to make the points more transparent? Choose one.
	□ color = "transparent" □ fill = "none" ■ alpha = 0.5 □ shape = lighter □ None of the above
(d)	(2 points) Plot D above makes use of theme_minimal(), one of R's built-in themes. Which of the following would adjust the size of the font to 15? Choose one.
	change to theme_minimal(base_size = 15) change to theme_minimal(font_family = 15) add a layer scale_size(15) after theme_minimal() add a layer font(size = 15) after theme_minimal() None of the above.

5. (11 points) Tidy data and importing

(a)	, –	coints) Fill in the blanks with cell, column, or row to describe the tidy data way ganizing datasets:
		Each forms a variable.
		Each is a single value.
	Э.	Each is a single value.
	(i)	(1 point) Fill in blank 1.
		column
	(ii)	(1 point) Fill in blank 2.
		row
	(iii)	(1 point) Fill in blank 3.
		cell
(b)	` -	points) True or false, we need to import both readr and the tidyverse in order to port data with the read_* functions.
		True False
(c)	(2 p	points) Which of the following would convert the dataframe df to a tibble? Choose
		as.data.frame(df, type = "tibble")
		<pre>convert_to_tibble(df)</pre>
		df %>% as_tibble()
		None. Dataframes cannot be converted to tibbles.

(d) (4 points) Suppose we have a dataset called my_file.csv that looks like the following. Fill in the blanks to import the data and ensure R understands the missing values as NA.

(i) (2 points) Fill in blank a.

```
read csv
```

(ii) (2 points) Fill in blank b.

```
c("na", "n\a")
```

6. (11 points) Data transformation

The following questions refer to our rt_by_speaker dataset introduced in question 3. The first 6 rows of this tibble are printed again here for your reference.

- 4 51.4 495. Native
- 5 52.6 851. Non-native
- 6 84.3 719. Non-native
 - (a) (2 points) How would you filter the dataset to keep only Native speakers with ReactionTime greater than 800 ms? Choose one.

```
☐ rt_by_speaker %>% filter(ReactionTime < 800 & SpeakerType == "Native")
☐ rt_by_speaker %>% filter(ReactionTime < 800 & SpeakerType = "Native")
☐ rt_by_speaker %>% filter(ReactionTime > 800 & SpeakerType == "Native")
☐ rt_by_speaker %>% filter(ReactionTime > 800 & SpeakerType = "Native")
☐ rt_by_speaker %>% filter(ReactionTime = 800 & SpeakerType = "Native")
☐ rt_by_speaker %>% filter(ReactionTime = 800 & SpeakerType = "Native")
```

(b) (3 points) Fill in the blanks to return the median ReactionTime by SpeakerType?

(i) (1 point) Fill in blank a.

```
SpeakerType
```

(ii) (2 points) Fill in blank b.

```
median(ReactionTime)
```

(c)	(2 points) Suppose we run the following code block. What will n() do? Choose one.
	<pre>rt_by_speaker %>% summarise(n = n())</pre>
	□ remove all NAs from the dataset count of the number of rows in the dataset add the string n before each value in SpeakerType Nothing, because it requires a grouping Throw Error: Missing arguments to n()
(d)	(2 points) True or false, the following code blocks are equivalent
	<pre># option 1 rt_by_speaker %>% select() %>% glimpse()</pre>
	<pre># option 2 select() %>% rt_by_speaker %>% glimpse()</pre>
	□ True False
(e)	(2 points) Suppose we want to create a new column ReactionTimeSeconds which converts every value in the ReactionTime column from milliseconds to seconds. Which of the following dplyr functions could accomplish this? Choose one.
	<pre>□ group_by with summarise() □ filter() □ select() ■ mutate() □ rename()</pre>

7. (18 points) Sampling distribution

Suppose we visualize the frequency distribution of a value in a dataset, shown below.

Ε

- (a) (2 points) Which of the following could best summarise the spread of these data? Choose all that apply.
 - \square mean
 - \square median
 - sd
 - interquartile range
 - □ p-value
- (b) (2 points) Which of the following could summarise the central tendency of these data? Choose all that apply.
 - mean
 - median
 - \square sd
 - \square interquartile range
 - □ p-value

(c) (2 points) Suppose we visualize the probability density function of the distribuition that generated these data (below) What could be the height of the probability density function at a value of 2? Choose one.

F

- □ 0.981
- \square 0.501
- 0.053
- \square Not enough information to determine this
- (d) (2 points) True or false, the probability density function shown in plot F is given by the following equation.

$$p(x) = \tfrac{1}{max-min}$$

- ☐ True
- False

(d) (6 points) Suppose we want to generate the bootstrap sampling distribution for the *median* of value in our dataset. Fill in the blanks to accomplish this with the infer package, generating 500 bootstrapped samples. Note that data has 10000 rows.

```
library(___a___)

data %>%
    specify(response = value) %>%
    generate(reps = ___b___, type = ___c__) %>%
    calculate(stat = ___d___)

(i) (1 point) Fill in blank a.

infer
```

(ii) (2 points) Fill in blank b.

```
500
```

(iii) (2 points) Fill in blank c.

```
"bootstrap"
```

(iii) (1 points) Fill in blank d.

```
"median"
```

(e) **(2 points)** The shaded area of the figure shows the 95% confidence interval. If we were to decrease the level of confidence to 68%, the confidence interval would become (choose one):

G Simulation-Based Bootstrap Distribution

- Narrower
- □ Wider
- □ Unchanged
- □ Not enough information to determine this
- (f) (2 points) Which of the following best describes the standard error? Choose one.
 - \square The mean of the parameter
 - \square The standard deviation of the population
 - The standard deviation of the sampling distribution
 - \Box The mean of the parameter estimate

8. (11 points) Hypothesis testing

Suppose we want to determine whether there is a difference in mean ReactionTime between our Native and Non-native speakers in the rt_by_speaker dataset. We can visualize these data with a boxplot.

Then we use infer to generate the sampling distribution for the difference in mean ReactionTime between the Native and Non-native speakers. We've visualized this distribution here and called shade_p_value() to generate the vertical line.

(a)	esis. State the null hypothesis here in the box below.
	The null hypothesis is that the difference in mean ReactionTime between Native and Non-native speakers is due to nothing but chance (sampling variability)
(b)	(2 points) Step 2 is to ask, if the null hypothesis is true, how likely is our observed pattern of results with a p-value. Given the figures above, which of the following could be the p-value? Choose one.
	□ -100 to 100 □ -220 □ There is not enough information to determine this
(c)	(2 points) Step 3 is to decide whether to reject the null hypothesis. True or false, we failed to reject the null hypothesis.
	□ True False

(d) (2 points) Why do we pose a null hypothesis? Choose one.

It is the hypothesis for which we can simulate data.□ It ensures that the alternative hypothesis is proven false.

 \square It allows us to generate predictions based on prior beliefs.

dividing by the total number of simulations that we generated.

(e) (2 points) True or false, we can compute a p-value by counting the number values in our null distribution that are more extreme than the actual observed value and then

19

 \square It is the hypothesis most likely to be true.

☐ True☐ False