

LING 0700 LAB: WEEK 3

TA: Wesley Mark Lincoln

COURSE ADMIN

REMINDERS

Slides on facet_wrap() vs. facet_grid() available

LECTURE REVIEW

PIPING

select(rating, Word, Frequency) %>% glimpse()

glimpse(select(rating, Word, Frequency))

WHY?

dplyr::select()

select(.data, ...) Extract columns as a table. mtcars |> select(mpg, wt)

dplyr::mutate()

mutate(.data, ..., .keep = "all", .before = NULL, .after = NULL) Compute new column(s). Also add_column(). mtcars |> mutate(gpm = 1 / mpg)

dplyr::filter()

filter(.data, ..., .preserve = FALSE) Extract rows that meet logical criteria. mtcars > filter(mpg > 20)

dplyr::select()

rename(.data, ...) Rename columns. Use **rename_with()** to rename with a function. mtcars |> rename(miles_per_gallon = mpg)

country	year	cases	population
Afghanstan	1.00	45	18:07071
Afghanistan	2000	2666	20:95360
Brazil	1999	37737	172006362
Brazil	2000	8(488	174:04898
China	1999	212258	1272915272
Chin	20	21 66	1280 8583
•	•	•	•

variables

observations

These examples use tuberculosis data available in base R. Access the datasets by simply calling table1, table2, etc.

This dataset (table1) is not tidy because columns 2 and 3 do not correspond to variables; 1999 and 2000 are values of a variable year.

A tibble: 3 × 3				
country	1999	2000		
<chr></chr>	<dbl></dbl>	<dbl></dbl>		
Afghanistan	745	2666		
Brazil	37737	80488		
China	212258	213766		

A way to distinguish values from variables:

- variables can be thought of as questions
- values are (possible) answers to those questions

A tibble: 3 × 3				
country	1999	2000		
<chr></chr>	<dbl></dbl>	<dbl></dbl>		
Afghanistan	745	2666		
Brazil	37737	80488		
China	212258	213766		

	A: Afghanistan
Q: Country?	A: Brazil
	A: China
O. Voar?	A: 1999
	A: 2000
	A: 745
Q: Cases?	— A: 37737
	• etc.

Year is a variable and ought to have its own column. All the numerical values (cases) ought to be in **one** column.

A tibble: 3 × 3				
country	1999	2000		
<chr></chr>	<dbl></dbl>	<dbl></dbl>		
Afghanistan	745	2666		
Brazil	37737	80488		
China	212258	213766		

This dataset (table2) is not tidy because cases and population are variables and ought to have a column each.

The contents of the pink rectangle constitute one observation and should occupy one row, not two.

A tibble: 12 × 4				
	country	year	type	count
	<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
ſ	Afghanistan	1999	cases	745
	Afghanistan	1999	population	19987071
	Afghanistan	2000	cases	2666
	Afghanistan	2000	population	20595360
	Brazil	1999	cases	37737
	Brazil	1999	population	172006362
	Brazil	2000	cases	80488
	Brazil	2000	population	174504898
	China	1999	cases	212258

China

1yyy.

nonulation

177791577

We could make the case that this data is tidy, and that type is a variable with values cases and population.

But this treatment is an unlikely one; it is more probably that cases and population are variables which will be used to calculate rate (cases/population).

A tibble: 12 × 4				
	country	year	type	count
	<chr></chr>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
	Afghanistan	1999	cases	745
	Afghanistan	1999	population	19987071
	Afghanistan	2000	cases	2666
	Afghanistan	2000	population	20595360
	Brazil	1999	cases	37737
	Brazil	1999	population	172006362
	Brazil	2000	cases	80488
	Brazil	2000	population	174504898
	China	1999	cases	212258
	China	1000	population	1070015070

This data **is tidy**. Each column is a variable and vice versa.

Each country name occurs twice, but notice that each occurrence is a single observation: the researchers measured cases and population once in 1999 and once in 2000. Thus, each row is an observation and vice versa.

country	year	cases	population	
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
Afghanistan	1999	745	19987071	
Afghanistan	2000	2666	20595360	
Brazil	1999	37737	172006362	
Brazil	2000	80488	174504898	
China	1999	212258	1272915272	
China	2000	213766	1280428583	

LAB EXERCISES

2. Suppose we attempt to import the csv file given above with the code below. What will be the result?

- imports with no errors or warnings
- fails to import, throws error

 \bigcirc

- imports, but with a warning that there are parsing issues
- imports, but changes the column name to age

2. Suppose we attempt to import the csv file given above with the code below. What will be the result?

imports, but changes the column name to age

```
The warning message helpfully
[28] data <- read_csv("https://pos.it/r4ds-students-csv",</pre>
                                                                            includes a way to find out what
         col types = list(AGE = col_double())
                                                                                        went wrong.
     data
÷
    Warning message:
     "One or more parsing issues, call `problems()` on your data frame for details,
     e.g.:
       dat <- vroom(...)</pre>
       problems(dat)"
                                 A spec_tbl_df: 6 × 5
      Student ID
                        Full Name
                                     favourite.food
                                                              mealPlan
                                                                           AGE
           <dbl>
                            <chr>>
                                               <chr>>
                                                                 <chr> <dbl>
               1
                     Sunil Huffmann Strawberry yoghurt
                                                              Lunch only
                                                                             4
               2
                                          French fries
                                                                             5
                       Barclay Lynn
                                                              Lunch only
                     Jayendra Lyne
                                                 N/A Breakfast and lunch
               3
                                                                             7
               4
                      Leon Rossini
                                                              Lunch only
                                           Anchovies
                                                                           NA
               5 Chidiegwu Dunkel
                                                     Breakfast and lunch
                                               Pizza
                                                                           NA
               6
                      Güvenç Attila
                                                             Lunch only
                                                                             6
                                            Ice cream
```

[]	problems(data)				
⋺₹	A tibble: 1 × 5				
	row col expected actual			file	
	<int></int>	<int></int>	<chr>></chr>	<chr>></chr>	<chr></chr>
	6	5	a double	five	

problems() shows that there was an issue in row 6, col 5: we told R to expect a double, but it found the string "five", so it replaced that with NA (pink box).

Student ID,Full Name,favourite.food,mealPlan,AGE
1,Sunil Huffmann,Strawberry yoghurt,Lunch only,4
2,Barclay Lynn,French fries,Lunch only,5
3,Jayendra Lyne,N/A,Breakfast and lunch,7
4,Leon Rossini,Anchovies,Lunch only,
5,Chidiegwu Dunkel,Pizza,Breakfast and lunch,five
6,Güvenç Attila,Ice cream,Lunch only,6

Visually, here's what happened.

The value "five" in the original .csv file (left) was replaced with NA in the tibble created by R (right).

Student ID	Full Name	favourite.food	mealPlan	AGE
<dbl></dbl>	<chr></chr>	<chr>></chr>	<chr></chr>	<dbl></dbl>
1	Sunil Huffmann	Strawberry yoghurt	Lunch only	4
2	Barclay Lynn	French fries	Lunch only	5
3	Jayendra Lyne	NA	Breakfast and lunch	7
4	Leon Rossini	Anchovies	Lunch only	NA
5	Chidiegwu Dunkel	Pizza	Breakfast and lunch	NA
6	Güvenç Attila	Ice cream	Lunch only	6

Student ID,Full Name,favourite.food,mealPlan,AGE
1,Sunil Huffmann,Strawberry yoghurt,Lunch only,4
2,Barclay Lynn,French fries,Lunch only,5
3,Jayendra Lyne,N/A,Breakfast and lunch,7
4,Leon Rossini,Anchovies,Lunch only,
5,Chidiegwu Dunkel,Pizza,Breakfast and lunch,five
6,Güvenç Attila,Ice cream,Lunch only,6

Notice that Jayendra's favourite food was N/A in the .csv file already (row 3, col 3).

3. Suppose we import the dataset given above and name it data. What will is.na(data[3,3]) return?

```
⊖ True
```

False

When we run is.na() on row 3, col 3, however, the output is FALSE – because "N/A'' is a string, distinct from NA, a special entity of type logical. The function is.na() specifically tests for this logical NA.